Technical University of Denmark

Flex4RES

Flexibility for Variable Renewable Energy Integration in the Nordic Energy System

Nordic Energy Research Flagship project September 2015 - March 2019

project coordinator:

Klaus Skytte

Energy Economics and Regulation DTU Management Engineering Systems Analysis Division

NEF Flagship project, NER 21 September 2015

DTU Management Engineering

Department of Management Engineering

Klsk@dtu.dk

Integrating a high share of variable renewable energy through enhanced energy market interaction

The Flex4RES project investigates how an intensified interaction between coupled energy markets, supported by coherent regulatory frameworks, can facilitate the integration of variable renewable energy (VRE) in turn ensuring stable, sustainable and cost-efficient Nordic energy systems.

Through a holistic system approach based on coupled energy markets, we **identify potentials**, **costs and benefits of achieving flexibility** in the Nordic power market created by the heat, gas and transport sectors as well as by power transmission and production.

We develop coherent regulatory frameworks and market designs that facilitate market interactions, which are optimal for the Nordic conditions in an EU context.

DTU

The primary objective of Flex4RES is to

Identify and assess regulatory and technical pathways towards coherent Nordic energy systems in 2050 based on strong interaction between different energy markets that ensure resilience, sustainability and efficiency.

The secondary objectives are to:

a) Estimate the potentials and costs of flexibility in the Nordic power market created by the coupling of and increased interaction between different energy markets (electricity, heat, gas and transportation). Estimate the need for flexibility in the future Nordic power market.

b) Identify regulatory and technological barriers to intensified market interaction. Develop coherent regulatory frameworks and market designs that facilitate energy market couplings that are optimal for the Nordic conditions in an EU context.

c) Adapt a high-resolution Nordic energy market model covering heat, power and transport for quantification of the impacts of different market couplings, regulatory frameworks and market designs. Estimate the cost and benefits of a coherent energy system framework.

There is a **comparative advantage of combining different energy markets**, both with respect to flexibility, but also with respect to synergy and economics.

The Nordic power market is well functioning despite a few technical challenges. With the right coupling to the underlying national and local energy markets for heat, gas, and transport fuels, enough flexibility can be generated in a cost efficient way and so embrace a larger amount of VRE.

The project has a holistic system approach to the Nordic Energy system with **flexibility obtained across energy markets** with respect to flexibility at the power markets.

we Analytical and practical approach

Flex4NES develops a **robust method of defining the flexibility potentials** in order to compare potentials from different energy sectors. Flexibility potential cost curves are estimated via data collections in the various Nordic countries and energy sectors. The outcome is a technology catalogue for flexibility potentials and costs in the Nordic countries.

The **need for flexibility** is estimated via the CorWind model (DTU Wind) that simulates wind and PV variability.

The needed **changes in regulatory frameworks to obtain the flexibility** of coherent Nordic markets are analysed via regulatory economics.

Together with the flexibility potential cost curves this is **analysed via the energy system modelling tool Balmorel**. The model is open source and is already used widely within the Nordic and Baltic countries and by several Flex4RES partners. E.g. Balmorel is used in the NETP (Nordic Energy Technology Perspectives 2016) project. Flex4RES builds on the findings and recommendation found in previous projects and the model is adapted further in-depth in order to cover heat, power, and transport for quantification of the **impacts of different market couplings, regulatory frameworks and market designs**.

Finally, the project sets up **regulatory and technical pathways** towards future stable, sustainable and cost-efficient Nordic energy systems with high shares of VRE.

The results of the project are **disseminated continuously** yearly, mid-term, and final in an interactive and dialog-based process with a broad range of stakeholders.

WP1: Flexibility need and potentials

- Task 1.1 Review and Method development
- Task 1.2 Flexibility potential cost curves, Technology catalogue
- Task 1.3 Flexibility need, uncertainty and impact on reserve need

WP2: Framework conditions

Task 2.1 Review of existing framework conditions
Task 2.2 The Nordic energy system designs
Task 2.3 Market integration, frameworks, and market designs
Task 2.4 Coherent market scenario set-ups
Task 2.5 Pathways to a flexible Nordic energy system

WP3: Energy system analysis of integrating energy systems

- Task 3.1 Model update / adaption
- Task 3.2 Market coupling analyses
- Task 3.3 Analytical results: comparison and interpretation

WP 4: Policy recommendations

Task 4.1 Economic impact of VRE and flexibility Task 4.2 Creating a sustainable and stable Nordic energy System

WP 5: Dissemination and capacity building

Task 5.1 Website, LinkedIn, and Newsletter Task 5.2 Advisory board meetings Task 5.3 Workshops/Seminars

6 DTU Management Engineering, Technical University of Denmark

7 DTU Management Engineering, Technical University of Denmark

9 DTU Management Engineering, Technical University of Denmark

Aalto Universit

Organisation / Institution	Country	
DTU, Management Engineering, Systems Analysis	Denmark	
NMBU, Institutt for Naturforvaltning	Norway	
KTH, Electric Power Systems	Sweden	
Aalto U, Applied Physics/New energy techn.	Finland	
Riga Technical U, Energy Systems & Env	Latvia	
DTU, Wind Energy	Denmark	
RAM-løse edb, Hans Ravn / Balmorel.com	Denmark	i.t.
NIFU	Norway	
Stockholm School of Economics	Sweden	N M
Tallinn University of Technology	Estonia	NIFI

we Advisory board - confirmed partners

Organisation	Country
NEPP/Energiforsk	SE
Statkraft	Ν
Statnett	Ν
Danish Energy Association	DK
DONG Energy	DK
Energinet.dk	DK
Energistyrelsen	DK
Dansk Fjernvarme, District Heating Ass	DK
Enova	Ν
AGORA Energiewende	D
Energimyndigheten, Swedish Energy Agency	SE
Cleen Ltd	FIN
Elering, TSO	EE
GASUM	FIN

+ More partners to be confirmed in the start-up phase

3,5 years - September 2015 - March 2019

WORK	PACKAGES AND TASKS	Lead	Start month (beg. of)	End month (end of)	0		12	24	36
WP1 F	lexibility need and potentials	KTH				+	<u>+</u> +		
	Task 1.1: Review and Method development	KTH	1	10					
	Task 1.2: Flexibility potential cost curves & Technology catalogue	RTU	1	18					
	Task 1.3: Flexibility need, uncertainty and impact on reserve need	DTU Wind	3	12					
	Task 1.4: From technical to realisable potentials	DTU MAN	10	22			-		
WP2 F	ramework conditions	DTU MAN						/	
	Task 2.1: Review of existing framework conditions	RTU	1	12					
	Task 2.2: Barriers for an intensified coupling	KTH	7	20					
	Task 2.3: Market integration, frameworks, and market designs	DTU MAN	12	33					
	Task 2.4: Coherent Market Scenario Set-Ups	NMBU	19	30					
	Task 2.5: Pathways to a Flexible Nordic Energy System	Aalto	28	38					
WP3 E	Energy System Analysis of integrating energy systems	NMBU					î	1	
	Task 3.1: Model update / adaption	NMBU	1	32					
	Task 3.2: Market Coupling Analyses	DTU MAN	10	38					
	Task 3.3: Analytical Results: Comparison and Interpretation	KTH	6	40					
WP4 F	Policy recommendations	Aalto							<i>II' II</i>
	Task 4.1: Potentials of and Barrier for VRE and Flexibility		14	20					
	Task 4.2: Economic Impact of VRE and Flexibility		34	42					
	Task 4.3: Creating a Sustainable and Stable Nordic Energy System		36	42					
WP5 [Dissemination and capacity building	DTU							19
	Task 5.1: Website, LinkedIn, and Newsletter		1	42					We n'l
	Task 5.2: Advisory board meetings		6	40					
	Task 5.3: Workshops/Seminars		9	42				[

VIEW MARS Stakeholder involvement & Dissemination

Klaus Skytte Head of Energy Economics and Regulation System Analysis Division DTU Management Engineering Technical University of Denmark

klsk@dtu.dk, http://www.sys.man.dtu.dk/