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N-I1-S-F-D DESIGN OF A WONDER

S o (Abstract of the project aims and selected results)

NORDIC INITIATIVE FOR
SOLAR FUEL DEVELOPMENT

“One can convert
with high efficiency
and in a direct way
CO, and water

into renewable chemical
fuels using only solar
energy”.

The Alchemist, in search of the philosopher’s stone. 2
Painting by Joseph Wright of Derby, 1771.



SOLAR ENERGY QUANTUM CONVERSION SCHEMES AND THEIR EFFICIECY
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A new world-record 2 22% conversion efficiency for solar-powered hydrogen production

has been claimed by researchers from Australia's Monash University.
(Credit: Shutterstock)

Reported working efficiencies of electrolyzers are in the range 60-75% for alkaline and
65-90% for PEM.

[E4tech Sarl with Element Energy Ltd, Feb. 2014 - Development of water electrolysis in the European Union].



What we do

and
why it is a wonder?

Because it solves number of problems:
- Storage

- Efficiency
- Emissions
- Supply




Main objectives - to design and develop a system that captures solar light and
generates renewable chemical fuels from CO, and water.

The general reaction producing fuels* from sunlight, water and CO,
follows:

2H,0 + xhv -->0,+4H* + 4 e-
CO,+ 8H"+ 8e- -->CH, + 2H,0
CO, + 6H" + 6e- --> CH;0H + H,0

e the elements of these routes can be combined into ONE scheme for
catalytic conversion of H,O and CO, to fuels.

e significant advantage is the possibility to have all these complex
transformations happening at the same photoelectrode (cathode).

e the three components of energy transformation: light harvesting,
charge carrier separation and catalytic transformation can be
optimized using nano-structured materials.



THE ELEMENTARY STEPS of photocatalysis
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11! The energy transfer is mediated* by charge carriers !!!




NISFD — Our MAIN SCIENTIFIC RESEARCH RESULTS:
(in several topics and areas = physics, chemistry, material-, nano-
and engineering- science)

1. Band-gap engineering and sensitizing for optimal photon capture
2. Nanofab and nanostructures for promotion of photocat reaction(s)
3. Nanofab for optimal charge transport and suppressed
recombination

4. Incorporation of metal co-catalysts for water splitting

5. Photo (electro) catalytic CO, conversion

6. Development of analytical and theoretical methods

7. Physical modeling and efficiency analysis



Specific RESULTS: ‘4,
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Main purpose

Identify cadidate materials for
high-photovoltage photoelctrodes
High voltage are needed for
"difficult” reactions like CO,
reduction and oxygen evolution

Main results

GaP is a candidate (Eg = 2.25 eV)
GaP is unstable without
protection

GaP gives lousy voltage on its own

GaP can be made very stable by
protection with TiO2 overlayer
The photovoltage of GaP is much
improved via a n-p heterojunction
between the p-GaP and the
protection layer

The protection layers found for
GaP have general applicability for
other materials

Main reference: Malizia, Seger, Chorkendorff & Vesborg, Journal of Materials Chemistry A, 2, p. 6847-6853 (2014)



Specific RESULTS:
WP3 Cell for photoelectrochemical reduction of CO,

Specific RESULTS:
WP4 Calculating of material properties and modeling of
system efficiency and costs.
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Optimal reaction mechanism

Calculated free energy for the optimal mechanism of CO, electroreduction at a Cu(111)
surface and electron chemical potential corresponding to -1.3 V (lower green curve)

) ‘COH _ i u=ov
- *CH, No H,O
*CH
0 B CH4(g)
*CH, +*0 ™
] 034 0.42 OH *+ H,0
4 b 0.45 021
=13V
With H,O bilayer
- = Tafel reaction
8 F 0.01

- Heyrovsky reaction

Free energy / eV

¢
A4

D [ 7

RARS A48,

0 1 2 3 4 5 6 7 8
(H* + e’) transferred

Hussain, J., Jénsson, H., Skdlason, E. “The Mechanism of CO, Electroreduction to Methane ” (submitted)




Pt nanoparticles could be feasible as HER
catalyst

* 1000 ng/cm? as good as much higher 0
loadings, 200 ng/cm? almost as good.
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Specific RESULTS:

Contacts with industry

e NorECs AS — Photoelectrodes and Solid-state
photoelectrochemical H2 generation with gaseous reactants;

e Carbon Recycling International, is expanding its methanol
production (and influence);

e Stena Line operates the first methanol driven ferryboat.
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The Stena Germanica, which was inaugurated
on the 27th March, is the first ferry to use
methanol as its main fuel.

https://www.youtube.com/watch?v=0P4U0XDgJF4
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* Kingsley Iwu, M.Sc., Oslo U., Norway, Nov. 2013
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