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Overview

> Microbial lipids as intermediate feedstock for HEFA pathway - coupled
with lignin 1st biorefinery

» Coupling gasification and biochemical conversions for At] pathway

» CO, transformations with renewable H, in a highly efficient trickle bed
reactor

> TRL of the technologies at DTU Chemical Engineering
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De-bottlenecking the HEFA pathway
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C3-C6 Sugars and Organic acids
alternative intermediate feedstock for HEFA
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- Limited availability of waste oils and oil crops in the Nordics

- Imported feedstock for the Nordics

- Forecasted heavy competition with the biodiesel industry — EU countries
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Microbial lipids

for the cells

» Their technical profile is similar to plant oils and animal fat

Table 7 Representative fatty acid composition of SCO produced by various oleaginous yeast strains and comparison to a number of technical oils

Total lipid

Fatty acids (%, w/w of total lipids)

Analogous (similar)

Microorganism content (%, w/w) C16:0 C16:1 C18:0 C18:1 C18:2 technical profile
Candida curvata D 58 32 — 15 44 8 Palm/Palm olein
Candida 107 42 44 5 8 31 9 Palm
Cryptococcus albidus 65 12 1 8 73 12 Olive oil
Lipomyces starkeyi 63 34 6 5 51 3 Palm/Palm olein
Lipomyces starkeyi 68 55.9 1.8 13.8 25.8 0.1 Cocoa butter
Trichosporon pullulans 65 15 — 2 57 24 Canola/olive
Yarrowia lipolytica 43 15 3 11 47 21 Chicken fat
Rhodosporidium toruloides 67.5 20 0.6 14.6 46.9 13.1 Lard

Koutinas et al., 2014, Chem.Sco.Rev. 43:2587
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Microbial lipids

» Carbon source: C5-Cg, sugars and lower molar mass organic acids as carbon sources

> Versatile feedstocks: lignocellulosic biomasses, municipal wastes, industrial and
agroindustrial effluents rich in organic matter, crude glycerol and syngas
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- Sugars and Organic acids-to-Lipids: TRL 3 internationally

- Lignocellulose-to-sugars: TRL 7 in DK BUT lignocellulosic sugars-to-lipids is currently investigated

5 DTU Chemical Engineering, Technical University of Denmark Hariklia Gavala 20.11.18



Microbial lipids from sugars and organic acids

e Technology validated in the lab - what is the challenge for going further?
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- More efficient extraction methods

- Produce high value products along with lipids

- Higher volumetric productivities and concentrations; threshold of 90 g/L and 1.3 g/L/h given a yield of
0.28 g lipids / g sugar (Davis et al. 2013, NREL/TP-5100-60223)
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Microbial lipids as part of Lignin-1st biorefinery
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Microbial lipids from sugars and organic acids

» Reactor development for higher productivities and concentrations

- Under development for other intracellularly accumulated compounds at DTU- Chem. Eng.
- Time horizon for lipids at TRL 4 after resources are raised: 3-4 years

> Novel solvents and solvent combinations for more efficient extraction based
on computer-aided solvent design methods (ICAS software in DTU Chem

Eng)

- Time horizon for TRL 4 after resources are raised: 3-4 years

> Lignin 1st biorefinery for obtaining high value products along with lipids
- Catalytic partisat TRL 3 - 4%
- Time horizon for TRL 5 after resources are raised: 3 years

*S. Ghafarnejad, 2018 Catalytic Hydroliquefaction of lignin to Value-Added Chemicals

PhD thesis, DTU-Chemical Engineering, Principal Supervisor: Anker Degn Jensen
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Coupling gasification and biochemical conversions

in the frame of SYNFERON project

= Innovation Fund Denmark

RESEARCH, TECHNOLOGY & GROWTH

A Fermentation \
q to alcohols \L

Downstream processing

CERE-DTU, DK
o : PROSYS-DTU, DK i . . .
emmmd  Gasification ISU-US %\ Up-concentration with Aquaporins
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:1 Biomethanation )

BIOSYSTEMER APS, DK
Aquaporin A/S, DK /

Collaborators for the BIO-part: l

A Grimalt-Alemany

K Asimakopoulos Engineering Analysis of the proposed platform EE;RCI?_SE U, DK
C Etler

IV Skiadas

http://www.cere.dtu.dk/research-and-projects/framework-research-projects/biorefinery-conversions/optimised-syngas-
fermentation-for-biofuels-production-synferon
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Coupling gasification and biochemical conversions for
At] pathway

Biochemical route

Lignocellulosic T I ( Biological
. —> Pretreatment | >
biomass ]

_______________ A L conversion

—> At)-SPK

Thermochemical route

Lignocellulosic Catalyti
J : Gasification I—»Syngas ~>| ataly t./c |_> FT-SPK
biomass conversion

Thermochemical + Biochemical -

-> Syngas fermentation

Lignocellulosic
gb' Gasification ]—> Syngas —»[ Syngas ]-» AtJ-SPK
iomass fermentation
Syngas Syngas |
Steel industry

DTU Chemical Engineering, Technical University of Denmark

AtJ-SPK

10 Hariklia Gavala 20.11.18

i



One step forward for cost reduction at DTU-Chemical

Engineering
/Pure cultures Synthesis gas Exhaust gas

H,/CO/CO,

Lanzatech tech.

Sterile growth medium

o

Alcohols

%o\m

3 o 3 03

Pure cultures

*  High efficiency

*  Easy to control
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Mixed cultures

*  Lower operational cost

* Higher tolerance and adaptability
*  No risk of contamination

*  Higher complexity

/

http://www.cere.dtu.dk/Research-and-Projects/PhD-Projects/Fermentation-of-Synthesis-Gas-to-gaseous-

and-liquid-fuels
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Syngas fermentation to alcohols
Metabolic network of acetogenic Mixed Microbial Consortia
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Thermodynamics of net metabolic reactions for
metabolic nhetwork selectivity towards alcohols

Feasibility study based on A,.G’; of all reactions occurring in MMC
Gibbs free energy change

;A porr [c]°[D]?
« A,G" = A,G°(I = 0.08 M) + RT In oy

, , T , 208.15 K—T
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Thermodynamic potential factor (Fr)
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kot -X - Fr (Jin & Bethke 2007

-mol)
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AG'(310°K) (Kl/e

AG4—AG
.FT =1- exp (— #)
AG, = —AGy

AGC = YATP . AGp

mm Reaction C
Bl > Kinetic control Grimalt-Alemany et al., 2018 Biotechnology for
0>F.>1 > Thermodynamic control Biofuels, 11:198,

Fr =<0 - Metabolism stops

https://doi.org/10.1186/s13068-018-1189-6
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Syngas fermentation to ethanol
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Effect of acetic acid concentration on A,G’';,,« and F;
(" Initial conditions: )
Substrate -> H, (1.05 atm), CO, (0.60 atm), CO (0.45 atm)
Product concentration -> 1 mM except acetate
Temperature -> 310 K
Ionic strength -> 0.08 M
pH ->5 Y,
Product yields (mol/e-mol) - Enriched culture with addition of 20 mM of acetic acid
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Tackling mass transfer limitations at DTU-Chem Eng
Mixed cultures allow for biofilm-based processes

i

» Trickle bed reactor
— High Mass Transfer Rates

— Biofilm formation

http://www.cere.dtu.dk/Research-and-Projects/PhD-Projects/Fermentation-of-Synthesis-Gas-and-design-
of-bioreactors
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Trickle Bed Reactor —
— operating
conditions

« So far tested for syngas-to-
CH,4 with and without
additional H, supply

« Temperature: 37 and 60 °C
« # pH control

* Pressure: 1 atm
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Conversions and production rates
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>100% enhancement compared to
= best reported production rates
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Trickle Bed Reactor
— with additional H,

Conversion efficiency
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Status of syngas bio-transformations

in the trickle-bed reactor

» Currently being tested for alcohols
production at lab-scale

» Up-scaling and construction finished

» High conversion efficiency of syngas
and upgrading with H, to be validated
at pilot-scale

» Status in 2019:
- Syngas-to-CH, and gas upgrading: TRL 5
- Syngas-to-alcohols: TRL 3 and time horizon for
TRL 5 if resources are raised: 2 years
- Syngas to lipids: follows microbial lipids planning:
3-4 years for TRL 5
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Our vision on Advancing Bio-manufacturing for SAF
in combination with thermochemical/catalytic/renewable
electricity routes
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From proof-of-concept to demonstration:
Pilot-facilities at DTU - Chemical Engineering

« 700 m? pilot plants, laboratories and workshop + 500 m?2 under construction
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in bubble-cap tray column
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g = I‘ Continuous distillation
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of alcohols
using structured
packing

Absorption of ammonia in
packed column

Hydrodynamics of gas/liquid flow in packed columns
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Drying processes

Fluidization and fluid bed drying

Drying on trays
in a tunnel
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Separation processes, 1

Disk-stack centrifugation
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Separation processes 2

Vacuum crystallisation

Ammonia
tray stripper

Evaporation in falling film evaporator
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Chemical and biochemical reactions

; |: Fixed bed for

B immobilized enzyme
processes, ion

# exchange or

ALy chromatographic
separations

Multipurpose plant for organic synthesis
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Other operations
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Heat transfer in pipes and plate heat exchangers
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Fermentation

An advanced fermentation platform with lab- and pilot- fermentors

will be established in DTU Chemical and Biochemical Engineering Dept. within 2019
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THANK YOU !

DTU Chemical Engineering, Technical University of Denmark
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