Computer Aided Design of Complex Products/Fluids And Application to Fuels

Georgios M. Kontogeorgis

Center for Energy Resources Engineering (CERE) & KT-Consortium Department of Chemical and Biochemical Engineering Technical University of Denmark

Big thanks to Professor (ret.) Rafiqul Gani, "guru" in this field and his PhD. students (N. Yunus, S. Kalakul)

Outline

- CERE and KT-Consortium short introduction
- What is Computer Aided (Product, Molecule, Blend) Design (CAPD)
- Role of Databases ("Big Data"), Property Models and Sustainability
- Two Case Studies on fuels design (gasoline and jet-fuel)
- Outlook to the future

In brief – two centers/consortia

- CERE a DTU center (faculty and researchers from 5 Departments) in the areas of energy (petroleum engineering, biofuels), CCS and related fields
- KT-Consortium a KT unit across two centers focusing on dissemination of results in process design, simulation – broader PSE
- Diverse disciplines involved esp. thermodynamics, separation and process design, mathematical modeling, geosciences
- Both have industrial consortia in energy, chemistry and biotechnology areas with annual (discussion) meetings

CERE Consortium 2018 (22)

Post-combustion CO₂ capture

Complex Chemical Products

- Chemicals based products are made from a collection of chemicals, which meet specific needs of product functionality and utility.
- Nowadays, more than 70,000 chemicals based products are used in the modern society for its survival

Zhang, L.; Babi, D. K.; Gani, R. New Vistas in Chemical Product and Process Design. *Annual Review of Chemical and Biomolecular Engineering*. **2016**, *7*(1), 557-582.

Chemical Product Design Framework

A Computer Framework to ASSIST the design of complex products, molecules, blends,... Propose solutions using a Knowledge-base system – to validate with experiments at the end

Various levels of property models

The group contribution concept

FIGURE 4. Solution of groups-concept.

Gmehling, 2009, J.Chem.Thermodynamics,41:731

CAMD for product design CAMD can be described as "Reverse Property Prediction"

CAPD/CAMD studies at DTU

Year	PhD Thesis	Products
2000	Peter Harper	Mixture/Solvent design
2009	Kavitha Satyanarayana	Polymer Design
2010	Elisa Conte	Solvent formulations- lotions (hairspray, insect repellent, paint, sunscreen)
2014	Michele Mattei	Emulsified products (hand-wash, tank-cleaning, sunscreen)
2014	Nor Alafiza Yunus	Blends (gasoline, lubricants)
2016	Sawitree Kalakul	Jet-fuel blends Diesel blends
2017	Spardha Jhamb	Chemical Substitution, Paints
2018	Markus Enekvist	Paints

Professor Rafiqul Gani

Also Professors K. Gernaey J. Woodley

Formulated Products

Formulated products are obtained by mixing selected components together to get the desired product attributes.

Skin Care Creams

Cosmetics

Detergents

Paints

Inkjet Printer Inks

Adhesives

Fuels - Blended products

Design of Jet-fuel blends

Design of Diesel Blends

Base Fuel + additives (bio-based/renewable sources Or diverse chemicals) to enhance the quality of base fuel

Design of Gasoline Blends

Chemical Product Design Simulator

VPPD - Lab

Virtual Product-Process Design Lab

Virtual Product-Process Design Lab

Databases in our software (ICAS/VPPD-Lab)

Database	# Compounds	# Properties	Database	# Compounds	# Properties
Combustible compounds (fuel blends)	1725	22	Normal fluids	1664	>60
Lipids	330	25	Polar non- associating	3078	>60
Environmental Compounds	26155	20	Polar associating	2355	>60
Emulsions	472	10	Polymers	23	
Solvents	1350		Electrolytes	124	
Formulations	614	16	Amino acids	104	

S. Kalakul, 2016 PhD Thesis (DTU)

Properties available in ICAS/VPPD-Lab

Туре	# Properties	Examples
Primary	"Classical" – critical, transport (about 20) Environmental and combustion (about 50)	Boiling point, BCF, GWP, LC_{50} HHV, CO_2 emission in combustion engine, Ozone depletion potential
Secondary	13	Refractive index, Henry's law constant
Functional	14 (depend on T,P)	Viscosity, Evaporation time
Mixture	8 (depend on composition)- Some linear mixing rules- Several non-linear mixing rules	Flash point, distillation curve, RVP
Performance	Solubility check for stability of blends or emulsions Evaporation rate Complex mathematical models	

Issues: Measure of sustainability

Property model functions

Many primary properties including environmental and combustion properties

$$f(X) = \sum_{i} N_{i}C_{i} + \sum_{j} M_{j}D_{j} + \sum_{k} O_{k}E_{k}$$

Examples: Higher Heating Value (HHV) developed by Yunus (2014 PhD thesis) GWP, ODP, LC_{50}

 $\Delta \Delta \nabla$

Fossil-fuel CO_2E BasedAviationFuels:-3% globalCO2 Emission(Blakey et al.,2011)

$$E = \frac{44}{12} \sum_{i} V_{i} H H V_{i} C_{content,i} F O_{i}$$

$$P = \sum_{i} x_{i} P_{i}$$

$$RVP = \sum_{i} x_{i} \gamma_{i} P_{i}^{sat}$$

CO₂ emission in combustion engine

Linear mixing rules

Reid vapor pressure

$$\sum_{i} \frac{x_i \gamma_i P_i^{sat}}{P_{i.Tf}^{sat}} - 1 = 0$$

Flash Point

Case study 1: Gasoline blends

- Problem statement
- The product to be designed is a <u>gasoline blend for</u> <u>car (spark-ignition type) engines</u> to be used in warm climates.
- ✓ <u>Gasoline is the main ingredient</u> in the blends.
- ✓ Other chemicals from renewable and/or nonrenewable sources (alcohols, ethers, esters, ketones, aldehydes, acids, furan and amine) are added to gasoline.

Objectives

- Identify tailor-made gasoline blends that match the desired product attributes
- ✓ Identify the suitable chemicals and their composition

Mixture/blend design

Input data

- Chemical database: Gasoline is the main ingredient (MI) or surrogate: A mixture or blend that is a starting estimate of the optimal blend
- 221 chemicals from different family group as additives

Pseudo-components	Chemical	Composition (vol%)
Of gasoline to	Butane	9.99
Represent the MI	n-Heptane	10.93
	Iso-octane	48.33
	1-Pentene	6.7
	Methylcyclopentane	8.32
	Toluene	15.74

Gasoline design

S. Kalakul, 2016 PhD Thesis (DTU)

The objective of this work is to improve properties of a gasoline surrogate by adding additives. It is able to help to reduce the conventional gasoline consumption, environmental impacts as well as diesel properties

Better performance, safer & lower consumption of conventional gasoline

E.g. Alcohols, ethers, ketones, acid/furan derivatives,....)

Work Flow for Product (Blend) Design

Mixture/blend design Algorithm

STEP	Method and tools
INPUTS	 Chemicals database, mixture property models Constraints on the target properties, temperature
Step 1.1	Compare the pure component properties of mixtures
Step 2.1	UNIFAC-LLE group representation for all chemicals and temperature
Step 2.2	STABILITY tool
Step 2.3	List all the miscible, partially miscible or immiscible mixtures.
Step 3.1 and 3.2	Optimize the composition ranges subject to linear constraints, using <i>linprog</i> solver in MATLAB
Step 3.3	Compare the region of interest with the stable region
Step 4.1	Optimize the composition range subject to non-linear constraints using the function <i>fmincon</i> in MATLAB with the maximum number of iterations set to 1000.
Step 4.2	Optimize the problem according to the defined objective function
OUTPUTS	N4 mixtures, composition, property values

Usually choose one property, and validate for others

Decomposition Method

- The problem is decomposed into several sub-problems according to their complexity
- Solving the problem this way, allows an efficient, robust and flexible solution of the problem
- This approach sequentially reduces the search space

Problem Definition

Target Values

Legislation, existing products, literature,

No.	Target properties:	Symbol:	Unit:	Lower Bound:	Upper Bound:
1	Reid vapor pressure	RVP	kPa	45	60
2	Higher Heating value	HHV	MJ/kg	40	+∞
3	Dynamic viscosity	η	сР	0.3	0.6
4	Density	ρ	g/cm ³	0.720	0.775
5	Flash point	T _f	K	$-\infty$	300
6	Lethal concentration	-logLC ₅₀	mol/L	-∞	3.08
7	Gibbs energy of mixing	ΔG ^{mix}	-	-∞	0
8	Oxygen content	Wt ₀₂	-	2	20

Also
$$\frac{d}{dx}\left(\frac{\Delta G^{mix}}{RT}\right) < 0$$

Also RON >92 in subsequent studies

Property models

Five linear (wrt) composition models

No.	Target properties	Symbol	Model	Function
1	Reid vapor pressure	RVP	GC(UNIFAC)	f (Ρ _{ναρ,i} , γ _i , x _i)
2	Heating value + RON	HHV	Linear mixing rule	f (HHV _i , x _i)
3	Dynamic viscosity	η	Linear mixing rule	f (η _i , x _i)
4	Density	ρ	Modified Rackett Equation	f (T, x _i)
5	Flash point	T _f	GC(UNIFAC)	$f(T_{f,i}, \gamma_{i,} x_{i})$
6	Lethal concentration	-logLC ₅₀	Linear mixing rule	f (LC _{50,i} , x _i)
7	Gibbs energy of mixing	ΔG^{mix}	UNIFAC	f(GC , x _i)
8	Oxygen content	Wt _{O2}	Linear mixing rule	f (O _{2,i} , x _i)

Experimental verification of the surrogate conventional gasoline mixture

	Gasoline property	Exp.	Model
1	Heating value, HHV (MJ/kg)		45
2	Dynamic viscosity, η (cP)	0.50	0.51
3	Lethal ConclogLC ₅₀		3.08
4	T10, T90 (K)	345/384	345/382
5	Density, ρ (g/cm ³)	0.7113	0.7260
6	Reid vapor pressure, RVP (kPa)	55.2	54.0
7	Flash point, T _f (K)		257

S. Kalakul, 2016 PhD Thesis (DTU)

MILP/MINLP model formulation at Levels 3 and 4

$\sum x = 2$				$45 \leq RVP =$	$= \sum_{i} x_i \gamma_i P_i^{sat} + \sum_{i}$	RVP
$\sum_{j} y_{j} = 2$ $0.05y_{j} \le x_{j} \le 0.2y_{j}$	Candidate selection and constraints for	on or		$\sum_{i} \frac{x_i \gamma_i P_i^{sat}}{P_i^{sat}}$	$\frac{t}{t}(T) + \sum_{i} \frac{x_j \gamma_j P_j^{sat}}{P^{sat}}$	$\frac{(T)}{1} = 1$
$x_{MI} + \sum x_i = 1$	compositions			$\underline{I}_{i} I_{i,T_{f}}$	$- j i j, T_f$	Flash point
$0.3 \le \eta = \sum_{i} x_i \eta_i + \sum_$	$\sum_{j} x_j \eta_j \le 0.6$	Visc	osity	$T_f \le 27$ ΔG^{mix} $= PT \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n}$	\neg	
$HHV = \sum_{i} x_i HHV_i +$	$\sum_{j} x_{j} HHV_{j} \ge 35$	HHV	/	$-KI \setminus Z$		Stability
$0.72 \le \rho = \frac{\sum_{i} x_i M w_i}{\sum_{i} \frac{x_i M w_i}{\rho_i}}$	$\frac{+\sum_{j} x_{j} M w_{j}}{+\sum_{j} \frac{x_{j} M w_{j}}{\rho_{j}}} \le 0.775$	Den	sity	$+ \sum_{j} (x_{j})$ $\frac{d}{\Delta G^{mi}}$	$\left(\ln x_j + x_j \ln \gamma_j\right) < $	υ
$2 \le W t_{02} = \sum_{i} x_i W t_{02}$	$x_{O2,i} + \sum_{j} x_j W t_{O2,j} \le 2$	20	Oxygen content	dx (RT) < 0	
$-\log(LC_{50})$ = $\sum_{i} x_i (-\log(LC_{50,i}))$ ≤ 3.08	$+\sum_{j}x_{j}(-\log(LC_{50,j}))$))	Lethal concentrat	ion, 50%		

Gasoline Blend Design

- 1 Pure component constraints (HHV, ρ, η, LC₅₀, WtO2)
- 2 Miscibility constraint (ΔG^{mix})
- 3 Linear constraints (HHV, ρ, η, LC₅₀, WtO2)

4 Non-linear constraints (RVP, Tf)

Solution – case with bio-based chemicals

The Results – ternary and bimary blends

N.A. Yunus, 2014 PhD Thesis

Blend	Composition (vol%)
Blend 1	MI (69), Tetrahydrofuran (11), 2-Methyl Tetrahydrofuran (20)
Blend 2	MI (67), Acetone (13), 2-Methyl Tetrahydrofuran (20)
Blend 3	MI (72), Acetone (10), 2-Butanone (18)
Blend 4	MI (75), 2-Butanone (13), 2-Methyl Tetrahydrofuran (12)
Blend 5	MI (77), Ethanol (12), 2-Methyl Tetrahydrofuran (11)

Binary Blends THF: Tetrahydrofuran; MeTHF: 2-Methyltetrahydrofuran

```
MI (54) + MTBE (46) or MSBE (46)
MI (75) + MeTHF (25)
MI (81) + THF (19)
MI (92) + Ethanol (8)
```

Yunus, Gernaey, Woodley and Gani, 2012. 22th ESCAPE, 17-20.6.2012, London Yunus, Gernaey, Woodley and Gani, 2014. CACE, 66: 201-213

Properties of the ternary blends

Blend	HHV	WtO ₂	RVP	RON	viscosity	LC ₅₀
1	41	7.2	46		0.48	2.7
2	41	7.8	46		0.47	2.7
3	40	7.3	49		0.48	2.7
4	43	5.5	45		0.50	2.9
5	42	6.7	45	96	0.57	2.8

Very good agreement between these values and recent experimental measurements Carried out at TEES Gas & Fuels Research Center, Texas A&M, Qatar – see next slide

Choudhury et al., 2018. J. Nat.Gas.Science & Eng, 55, 585.

Yunus, Gernaey, Woodley and Gani, 2012. 22th ESCAPE, 17-20.6.2012, London Yunus, Gernaey, Woodley and Gani, 2014. CACE, 66: 201-213

The experimental validation The properties are tested using ProCAPD and experiments

Gasoline blend candidates with their composition and properties ((1): The presented MINLP model; (2): ProCAPD; (3): Experiment)

ID	Composition (vol%)	RVP	НΗV	η	ρ	Wt _{o2}	LC ₅₀	T _f
	MI (69)	(1) 45	(1) 42	(1) 0.50	(1) 0.7424	(1) 6.2	(1) 3.0	(1) -17
1	THF (11)	(2) 46	(2) 41	(2) 0.48	(2) 0.7709	(2) 7.2	(2) 2.7	(2) -18
	MeTHF (20)	(3) 46	(3) -	(3) 0.54	(3) 0.7596	(3) -	(3) -	(3) -
	MI (67)	(1) 45	(1) 40	(1) 0.48	(1) 0.7367	(1) 7.3	(1) 3.0	(1) -18
2	ACE (13)	(2) 46	(2) 41	(2) 0.47	(2) 0.7618	(2) 7.8	(2) 2.7	(2) -22
	MeTHF (20)	(3) 60	(3) -	(3) 0.46	(3) 0.7482	(3) -	(3) -	(3) -
	MI (72)	(1) 46	(1) 40	(1) 0.45	(1) 0.7245	(1) 6.7	(1) 3.0	(1) -18
3	ACE (10)	(2) 49	(2) 40	(2) 0.48	(2) 0.7480	(2) 7.3	(2) 2.7	(2) -21
	2BE (18)	(3) 59	(3) -	(3) 0.45	(3) 0.7333	(3) -	(3) -	(3) -
	MI (75)	(1) 47	(1) 42	(1) 0.48	(1) 0.7288	(1) 5.1	(1) 3.1	(1) -17
4	2BE (13)	(2) 45	(2) 43	(2) 0.50	(2) 0.7528	(2) 5.5	(2) 2.9	(2) -18
	MeTHF (12)	(3) 50	(3) -	(3) 0.46	(3) 0.7395	(3) -	(3) -	(3) -
	MI(77)	(1) 49	(1) 41	(1) 0.58	(1) 0.7234	(1) 6.2	(1) 2.7	(1) -17
5	EtOH (12)	(2) 45	(2) 42	(2) 0.57	(2) 0.7487	(2) 6.7	(2) 2.8	(2) -16
	MeTHF (11)	(3) 55	(3) -	(3) 0.61	(3) 0.7357	(3) -	(3) -	(3) -

THF: Tetrahydrofuran; MeTHF: 2-Methyltetrahydrofuran; ACE: Acetone; 2BE: 2butanone; EtOH: Ethanol

Choudhury et al., 2018. J. Nat.Gas.Science & Eng, 55, 585.

<u>Case-study 2: Design of a tailor-made</u> jet-fuel blends

PK fuels (Paraffinic Kerosene) produced from GTL (Gas to Liquid) via the Fischer-Tropsch process (or CTL: Coal to Liquid)

PK fuels lack certain chemical constituents, which although are benign to environment, offer a tradeoff in performance when used in a jet-fuel engine

□ The objective of this work is to improve properties of the GTL PK fuel by blending with feasible additives

□ The main challenge involves how to identify the blends that satisfy the blend target properties with various type of additives

S. Kalakul and R. Gani

Blends of jet-fuel should have...

- Low Reid Vapor Pressure (to prevent evaporative losses and fuel system vapor lock)
- High flash-point temperature
- High HHV (to maximize the energy that can be stored in a fixed volume and provide the longest flight range)
- Low melting point (to prevent formation of wax crystals which are difficult to pump into turbine engines)
- Low greenhouse gas (CO₂) emissions

Kalakul et al., 2018, CACE, 116: 37-55; Gammon, 2004. ASTM Manual Series, MNL 5.

□ STEP-1: PROBLEM DEFINITION

Input: Product type is jet-fuel Tools: Jet-fuel design knowledge base Output: Target properties and constraints S. Kalakul, 2016 PhD Thesis (DTU)

Kalakul et al., 2018, CACE, 116: 37-55 Zhang et al., 2018, IECR, 57: 7008-7020

+Product Standards (ASTM St D1655, 2016)

List of product needs and their corresponding target property constraints for the jet-fuel blend design

Product Need	Target property	Target value	Unit
Low human toxicity	-logLC ₅₀	$-\log LC50 \le 4.58$	mol/L
Safety/Flammability	Flash point (T _f)	$T_f \ge 38$	°C
Ability to be burned	Reid vapor pressure (RVP)	RVP ≤ 1	kPa
	ASTM distillation temperature	$T_{10} \le 205$	°C
Consistency of fuel flow	Kinematic viscosity at -20 °C (V)	$V \le 8$	mm²/s
	Freezing point (T _{freez})	T _{freez} ≤ -40	°C
Engine efficientcy	Density at 15 °C (ρ)	$0.775 \le \rho \le 0.840$	g/mL
	Higher heating value (HHV)	HHV ≥ 43	MJ/kg
Low environmental impacts	CO ₂ emission in the combustion engine	$CO_2E \le 25.36$	kgCO ₂ /mile
	(CO ₂ E)		

$$\Delta Gmix < 0$$
 and $\frac{d}{dx} \left(\frac{\Delta G^{mix}}{RT} \right) < 0$

Phase Stability

Kalakul et al., 2018, CACE, 116: 37-55

□ STEP-2: PRODUCT INGREDIENT IDENTIFICATION (GTL PK + Additive)

List of target properties and constraints from STEP-1, GTL PK composition Input: Tools: ProCAPD database, property calculation toolbox Output: Set of jet-fuel additives, pure component properites of GTL PK and additives

CAMD technique in ProCAPD

Formula Name Composition (vol%) C9H20 2.9 Octane, 2-methyl-C9H20 Octane, 3-methyl-2.9 C9H20 2.8 Nonane chromatography (GC) C10H22 Heptane, 2,4,6-trimethyl-33 Nonane, 4-methyl-C10H22 3.1 C10H22 Octane, 2.6-dimethyl-3.2 C10H22 Octane, 3.6-dimethyl-3.3 C10H22 Octane, 4-ethyl-3.1 C10H22 Decane 3.0 C10H22 3.1 Nonane, 4-methyl-C10H22 Nonane, 2-methyl-3.1 C10H22 Octane, 3-ethyl-3.1 C10H22 3.1 Nonane, 3-methyl-C11H23 Decane, 2-methyl-3.3 C11H24 Nonane, 2,5-dimethyl-3.5 C11H24 3.5 Nonane, 2,6-dimethyl-C11H24 Decane, 3-methyl-3.4 C11H24 Decane, 5-methyl-3.4 C11H24 Decane, 4-methyl-3.4 Decane, 3-methyl-C11H24 34 C11H24 Undecane 3.2 C12H26 3.6 Nonane, 5-propyl-Gas C12H26 3.7 2,3-Dimethyldecane C12H26 3.7 Decane, 2,5-dimethyl-C12H26 Decane, 4-ethyl-3.6 C12H26 Undecane, 5-methyl-3.6 C12H26 Undecane, 4-methyl-3.6 C12H26 3.5 Undecane, 2-methyl-C12H26 Undecane, 3-methyl-3.6 C13H28 Decane, 2,6,6-trimethyl-4.0

GTL PK fuel composition*

List of additives for tailor-made jet-fuel blends

Formula

C7H8

C11H24

C9H12

C10H22

C9H20

C9H20

C10H22

C8H10

C9H20

C9H20

C8H18O

C9H20

C8H18

C10H22

C10H22

C9H20

C8H18

C10H22

C10H22

C9H20

C9H20

C8H18

C8H18

C8H18

C7H16

C9H20

C8H18

C7H16

C5H12O

C8H18

C8H18

C5H12O

C9H20

C7H16

C6H12

C6H14

C8H18

C8H18

C6H14O

C7H16

C7H16

Chemical Toluene Undecane Benzene, Propyl-2,2-Dimethyloctane 2,2,4,4-Tetramethylpentane 3,3-Diethylpentane Decane Ethylbenzen 2,2-Dimethylheptane 2,4,4-Trimethylhexane N-Butyl Ether 2,3,3,4-Tetramethylpentane 3-Methyl-3-Ethylpentane 4-Methylnonane(DI) 5-Methylnonane Nonane 2.2-Dimethylhexane 2,7-Dimethyloctane 2,4-Dimethyloctane 3-Ethylheptane 4-Methyloctane 2.2.4-Trimethylpentane 2,2,3-Trimethylpentane N-Octane 2,2-Dimethylpentane 2,6-Dimethylheptane 2-Methylheptane 2.2.3-Trimethylbutane Methyl-Isobutyl-Ether 3-Methylheptane 2,3,4-Trimethylpentane Methyl-Sec-Butyl-Ether 2.4-Dimethyl-3-Ethylpentane N-Heptane Methylcyclopentane 2,2-Dimethylbutane 2.5-Dimethylhexane 2-Methyl-3-Ethylpentane Diisopropyl-Ether 3-Methylhexane 3-Ethylpentane

50 feasible additives are generated using the CAMD technique in ProCAPD

according to the benchmark of the existing jet-fuel characterized by properties such as boiling point, melting point and flash point as well as types of chemicals present

*TEES Gas & Fuels Research Center, Texas A&M University at Qatar

Kalakul et al., 2018, CACE, 116: 37-55

□ STEP-3: CAM^bD SOLUTION

Input: Objective function, mixture type (ternary), GTL PK composition and its property equations, set of additive candidates and their property equations
 Tools: ProCAPD database, property calculation toolbox, ProCAPD solvers (GAMS, MATLAB)
 Output: List of promising blend candidates

The target property models are formulated as a MINLP problem

Subject to;	$\max f_{obj} = \sum_{i=2}^{NC} x_i y_i$	···(1) N	Minimize GTL PK (MI) amount Down to a specific limit
Mixture constraints:	$\frac{\Delta G^{mix}}{RT} = \sum_{i} x_{i} \ln x_{i} + \frac{G^{E}}{RT}$ $\frac{d^{2} \Delta G^{mix}}{dx^{2}} > 0$	···(2) ···(3)	Mixture miscibility
Product property constraints:	$\begin{split} \phi_k &= \sum_i x_i \phi_{i,k} \qquad k = \\ &\sum_i \frac{x_i \gamma_i P_i^{sat}(T)}{RVP_B} - 1 = 0 \\ &\sum_i \frac{x_i \gamma_i P_i^{sat}(T)}{P_{i,FP}^{sat}} - 1 = 0 \end{split}$	$\left[\begin{array}{c}1,5\cdots(4)\\\cdots(5)\\\cdots(6)\end{array}\right]$	Ideal properties (Linear models) Non-ideal properties (Non-linear models)
Process model constraints:	$\sum_{i}^{n} x_{i} - 1 = 0$ $0 \le x \le 1, y \in \{0, 1\}$	(7)	

□ STEP-3: CAM^bD SOLUTION

ID	Optimization Solution	Composition (vol%)
1	DC	GTL PK (80.2) Decalin (8.3) Butylbenzene (11.5)
2	DC	GTL PK (78.6) Decalin (12.4) Pentylbenzene (9)
3	DC	GTL PK (77) Decalin (6) Hexylbenzene (17)
4	TS	GTL PK (77) Decalin (18) Hexylbenzene (5)

Blend matching the target properties (DC: the decomposition-base algorithm; TS: The two step solution approach)

decomposition-base algorithm [1]

[2] S. Kalakul, S. Cignitti, L. Zhang, R. Gani, 2017, Chapter 3 – VPPD Lab: The Chemical Product Simulator, Tools For Chemical Product Design, Computer Aided Chemical Engineering, 39, 61-94. Kalakul et al., 2018, CACE, 116: 37-55 Zhang et al., 2018, IECR, 57: 7008-7020

Equations: 143 (461)# Continuous variables: 30099 (85781)# Discrete variables: 51 (221)(in parenthesis for the Gasoline case study)

Two step solution approach [2]

[2] L. Zhang, S. Cignitti, R. Gani, 2015, Generic mathematical programming formulation and solution for computer-aided molecular design, Computers & Chemical Engineering, 78, 79-84.

Kalakul et al., 2018, CACE, 116: 37-55

□ STEP-4: MODEL-BASED VERIFICATION/EXPERIMENTAL VERIFICATION

Input: List of promising candidates from STEP-3

Tools: Property calculation toolbox, Jet-fuel design knowledge base

Output: A set of promising blend candidates and property values calculated by rigorous property models and a set of experimental tests for product design verification

 \Box Rigorous property models to predict η and ASTM distillation temperatures are applied in this step

Experimental verification is done by TEES Gas & Fuels Research Center, Texas A&M University at Qatar

Let can be noted that the results predicted by ProCAPD are in good agreement with the experimentally measured data

List of Blend matching the target properties and their target property values (ProCAPD-RG: Rigorous models in ProCAPD)

ID		RVP	HHV	V	ρ	CO_2E	-logLC ₅₀	T_f	<i>T</i> ₁₀	T ₅₀	T ₉₀	T_m	WSD S	Small for good lubricity
	ProCAPD	0.57	46.6	3.55	0.784	21.4	4.41	56	183	197	222			X 773um Y 633um Avg 706um
1	ProCAPD-RG			3.56										
	Experiment		46.9	3.83	0.776			56	181	195	220	-55	0.706	
	ProCAPD	0.55	46.5	4.22	0.786	20	4.32	56	186	202	221			
2	ProCAPD-RG			4.18										
	Experiment		46.8	4.19	0.779			58	184	199	219	-55	0.731	
	ProCAPD	0.52	46.5	4.32	0.784	22	4.51	57	190	209	228			
3	ProCAPD-RG			4.21										*wear scar diameter (WSD)
	Experiment		46.9	4.24	0.776			60	187	205	222	-55	0.641	(2013))
	ProCAPD	0.50	43.1	4.09	0.780	24	4.42	51	183	197	222		/	
4	ProCAPD-RG			4.1										
	Experiment													
OTT	ProCAPD	0.64	47.6	3.22	0.756	23	4.58	58	184	204	228			Improve
GIL	ProCAPD-RG													All properties
PK	Experiment		47.0	4.11	0.752			56	181	201	223	-49	0.712	· · ·

The optimum Blend ID1 composition

Octane, 2-methyl- 2.3 Octane, 3-methyl- 1.8 Nonane 9.3 Heptane, 2,4,6-trimethyl- 0.8 Nonane, 4-methyl- 1.5 Octane, 2,6-dimethyl- 1.5 Octane, 3,6-dimethyl- 1.1 Octane, 4-ethyl- 2.2 Decane 13.7 Nonane, 4-methyl- 2.3 Nonane, 2-methyl- 3.3 Octane, 3-ethyl- 0.7 Nonane, 3-methyl- 4.2 Decane, 2-methyl- 3.0 Nonane, 2,5-dimethyl- 1.3 Nonane, 2,6-dimethyl- 1.2 Decane, 3-methyl- 1.1 Decane, 5-methyl- 2.6 Decane, 4-methyl- 2.4 Decane, 3-methyl- 3.2 Undecane 4.8 Nonane, 5-propyl- 1.6

2,3-Dimethyldecane 3.4 Decane, 2,5-dimethyl- 1.2 Decane, 4-ethyl- 1.0 Undecane, 5-methyl- 1.4 Undecane, 4-methyl- 0.9 Undecane, 2-methyl- 1.1 Undecane, 3-methyl- 0.8 Decane, 2,6,6-trimethyl- 1.3

Decalin 18.0 Hexylbenzene 5.0

Kalakul et al., 2018, CACE, 116: 37-55

Flexibility in the approach e.g. change of database

S. Kalakul, 2016 PhD Thesis (DTU)

Screenshot of step-1 using Blend Design Template in ProCAPD

Define meds Select All Translate Needs into Target Properties Specify Target Property Constraints List of Needs and Taget Properties Use TargetProperty Targetproperty/I Targetproperty/II List of TargetProperty MinValue MaxVet Need Use TargetProperty Targetproperty/II Targetproperty/II TargetProperty MinValue MaxVet Ability to be burned Image: Property FlashP Image: Property MinValue MaxVet Safety Image: Property FlashP Image: Property MinValue MaxVet Engine efficiency1 HHV Image: Property Image: Property Image: Property MinValue MaxVet Consistency of fuel flow1 HHV Image: Property Image: Property Image: Property Image: Property Image: Property Image: Property MaxVet Image: Property Image: Property Image: Property MaxVet Image: Property Image: Property <th>Dofault</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>t Name</th> <th>Produc</th> <th>t Type I</th> <th>Produc</th> <th>m Type Design</th> <th>roble Blend</th>	Dofault						t Name	Produc	t Type I	Produc	m Type Design	roble Blend
List of Taget Properties Need Use TargetProperty Targetproperty/ll Targetproperty/ll TargetProperty MinValue MaxVet Ability to be burned Image: RVP Image: RVP <th>Delault</th> <th>aints</th> <th>erty Constra</th> <th>ecify Target Prop</th> <th>Sp</th> <th>o Target Properties</th> <th>nslate Needs inte</th> <th>Тга</th> <th>II</th> <th>Select A</th> <th>ne Needs</th> <th>Defi</th>	Delault	aints	erty Constra	ecify Target Prop	Sp	o Target Properties	nslate Needs inte	Тга	II	Select A	ne Needs	Defi
Need Use TargetProperty Targetproperty/l Targetproperty/l Targetproperty/l TargetProperty MinValue MaxV Ability to be burned Image: RVP Image			ostraints	of Taget Property Con	List o				ies —	Taget Propert	Needs and i	List of
Ability to be burned Image: RVP Ima	alue	MaxVa	MinValue	TargetProperty		Targetpropertylll	Targetpropertyll	largetProperty	Use		Need	
Safety ✓ FlashP ✓ ✓ FlashP 311 370 Engine efficiency1 ✓ HHV ✓ ✓ HHV 43 50 Engine efficiency2 ✓ Lden_15C ✓ ✓ ✓ Lden_15C 775 840 Consistency of fuel flow1 ✓ KinVis_20C ✓ ✓ ✓ CO2E 0 8		1	0	RVP	•	~	~	'VP	\checkmark	burned	Ability to be	▶
Engine efficiency1 ☑ HHV ✓ ✓ ✓ Engine efficiency2 ☑ Lden_15C ✓ ✓ ✓ Consistency of fuel flow1 ☑ KinVis_20C ✓ ✓ ✓ ✓ Environmental impacts ☑ CO2E ✓ ✓ ✓ ✓ ✓		370	311	FlashP		~	~	lashP	\checkmark		Safety	
Engine efficiency2 ☑ Lden_15C × </th <td></td> <td>50</td> <td>43</td> <td>HHV</td> <td></td> <td>~</td> <td>~</td> <td>HV</td> <td>\checkmark</td> <td>iency1</td> <td>Engine effic</td> <td></td>		50	43	HHV		~	~	HV	\checkmark	iency1	Engine effic	
Consistency of fuel flow1 Image: Consistency of fuel flow1 Image: Constant of the		840	775	Lden_15C		~	~	den_15C	\checkmark	iency2	Engine effic	
Environmental impacts V CO2E V V V CO2E 0 25.36		8	0	KinVis20C		~	~	inVis20C		y of fuel flow1	Consistency	
		25.36	0	CO2E		~	~	02E	\checkmark	ntal impacts	Environmen	
Low toxicity MinlogLC50 ~ / MinlogLC50 0 4.58		4.58	0	MinlogLC50		~	~	linlogLC50			Low toxicity	
	_				•	~	~					*

Screenshot of step-2 using Blend Design Template in ProCAPD

rot	Diem D	emnition 2: In	great		3: Mixture	Biena De	sign 4: S	ummary Resu	lits Help		
urro	ogate	Additive(s)									
Sele	ct Surrog	ate	0		11						
let-fu	elSurrog	jate1	Surro	gate comp	position					_	
ATL	PK1			ID	ChemName	CAS	Formula	Xi		^	
				149 (Octane, 2-methyl-	003221-61-2	2 C9H20	0.03298321231	8103375		
				150 (Octane, 3-methyl-	002216-33-3	3 C9H20	0.02591121498	1993665		
				151 N	Vonane	000111-84-2	2 C9H20	0.13782375014	620382		
				152 H	Heptane, 2,4,6-trimethyl-	002613-61-	3 C10H22	0.01056744304	5632093		Accept
orn	nation			153	Nonane, 4-methyl-	017301-94-9	OC10H22	0.01939993275	5414143		Surrogate
he (GTL PK o	composition is		154 (Octane, 2,6-dimethyl-	002051-30-	1 C10H22	0.01953136861	419066		
rovi	ded by T	EES Gas &		155 (Octane, 3,6-dimethyl-	015869-94-) C10H22	0.01343274476	6960198		
uels	Reséar	ch Center, Texas		156 (Octane, 4-ethyl-	015869-86-) C10H22	0.02894217610	2589388		
.&M	Universi	ty at Qatar		157 E	Decane	000124-18-	5 C10H22	0.18803213956	568751		
										~	
Surr	ogate Pr	operty									
	ID	ChemName		CAS	Smile	Form	ula Mw	ChemType	ProblemType	Ing	redientType ^
►	149	Octane, 2-methyl	-	003221-6	1-2 CCCCCCC(C)C	C9H2	D 128.	25	BlendDesign	Surr	ogate
	150	Octane, 3-methyl	-	002216-3	3-3 CCCCCC(C)CC	C9H2	0 128.	25	BlendDesign	Surr	rogate
	151	Nonane		000111-8	4-2 CCCCCCCCC	C9H2	0 128.	25	BlendDesign	Surr	rogate
	152	Heptane, 2,4,6-tri	methyl-	002613-6	1-8 CC(C)CC(C)CC(C)C	C10H	22 142.	28	BlendDesign	Surr	ogate
	153	Nonane 4-methy	ıl-	017301-9	4-9 CCCCCC(C)CCC	C10H	22 142	28	BlendDesign	Sur	rogate Y

Screenshot of step-3 Objective function identification

🖳 Blend Design Template		– 🗆 ×
1: Problem Definition 2: Ingredient Selection 3: Mixture Blend D	sign 4: Summary Results Help	
Objective Function Level 1 Level 2 Level 3 Level 4		
Select Blend Type Max Surrogate 3 2 = Binary Blend (Surrogate + 1 Additive) 3 = Ternary Blend (Surrogate + 2 Additives) 4 = Quaternary Blend (Surrogate + 3 Additives)	nolar fraction (0-1) The MINLP pr	roblem is decomposed into 4 sub-levels:
Select Objective Function MI Consumption Surrogate m Objective MI Consumption Change Value Minimization or Maximization Max Change Value	lar fraction limits Min 0.5 Max 1 Level3: Linear	ening pure compound properties sis of mixture miscibility r target property optimization
Chemical blends is formulated as a Mixed Integer Non-Linear Programming (MINLP General blend problem is formulated as:	problem Level4: Non-li Number of ger	near target property optimization
min or max $f_{obj}(X, Y, Q, E, S)$	(3.1)	
Subject to: Mixture constraints: $g_1(X, Y) > 0$	(3.2) Seatch 50	L1: Pure component constraints
Product property constraints: $\zeta_{LB} \leq g_2(X, Y, \zeta) \leq \zeta_{UB}$	(3.3)	Constraints
Process model constraints: $g_3(X, Y) = 0$	(3.4)	L3: Linear constraints
min or max $f_{obj}(X, Y, Q, E, S)$	(3.1)	constraints
where X = composition, Y = mixture property, Q = process constraints, E = Envirome S = Safety constraints	al impact constraints,	

Screenshot of step-3 Level1: Pure component

🔡 Bler	d Design Temp	olate						-	
1: Pr	oblem Def	inition 2	2: Ingredi	ent Selection	n 3: Mixture Ble	end Des	ign 4: Summar	ry Results Help	
Obj	ective Fun	nction L	evel 1 Le	evel 2 Level	3 Level 4				
Lev	vel 1: Pure Co Generate A	mponent Co Iternatives	onstraints All po prope	ssilbe blends wil rty values with pr	l be screened by cor e-difined target value	nparing pur es	e component	The MINLP problem is decomposed into 4 sub-levels:	
	501	aat	Y = A N = A	blend satisfies p blend does not s	roperty linear propert atisfy linear _{Level} 1 F	y constrain Results	ts	Level1: Screening pure compound properties	
	BlendID	AddID_1	AddID_2	AddName_1	AddName_2	HHV	Lden_15C	Level3: Linear target property optimization	
•	1	1	2	1-Pentanol	3-PENTANOL	Y	Y	Level4: Non-linear target property optimization	
	2	1	3	1-Pentanol	2-PENTANOL	Y	Y		
	3	1	4	1-Pentanol	3-METHYL-2-BU	Y	Y	Number of generated blends 1431	
	4	1	5	1-Pentanol	Toluene	Y	Y	Number of generated biends	
	5	1	6	1-Pentanol	Undecane	Y	Y		
	6	1	7	1-Pentanol	Benzene, propyl-	Y	Y	528 L1: Pure component	
	7	1	8	1-Pentanol	2,2-dimethylocta	Y	Y		
	8	1	9	1-Pentanol	2,2,4,4-tetrameth	Y	Y	L2: Miscibility	
	9	1	10	1-Pentanol	3,3-diethylpentane	Y	Y	Constraints	
	10	1	11	1-Pentanol	Decane	Y	Y		
	11	1	12	1-Pentanol	Ethylbenzene	Y	Y	L3: Linear constraints	
	12	1	13	1-Pentanol	2,2-dimethylhept	Y	Y		
	13	1	14	1-Pentanol	2,4,4-trimethylhe	Y	Y	L4: Non-Linear constraints	
	14	1	15	1-Pentanol	n-Butyl ether	Y	Y		
	15	1	16	1-Pentanol	2,3,3,4-tetrameth	Y	Y		
<	16	1	17	1-Pentanol	3-METHYL-3-ET	Y	Y	¥	

Screenshot of step-3 Level2: Miscibility constraints

🖶 Blen	d Design Template						- 0	×
1: Pro	blem Definit	ion 2: Ingre	edient Selecti	on 3: Mixture	Blend Design 4: Summar	ry R	tesults Help	
Obie	ective Function	on Level 1	Level 2 Leve	el 3 Level 4				
Lev	el 2: Stability Anal	lvsis						
	Colouloto Missibili	iter Liquid M	issibility of all pass	sible blende will b	analyzed			
	alculate Miscibili		iscibility of all pos	Sible blends will be	e analyzed			
	See Results	All poss	ible additive that a	re miscible with Su	irrogate are		The MINLP problem is decomposed into 4 sub-levels:	
					-		Level1: Screening pure compound properties	
Mise	ciblity results						Lovel2: Analysis of mixture missibility	
	BlendID	AddID_1	AddID_2	AddName_1	AddName_2	^	Levelz. Analysis of mixture miscibility	
۱.	1	1	2	1-Pentanol	3-PENTANOL		Level3: Linear target property optimization	
	2	1	3	1-Pentanol	2-PENTANOL		Level4: Non-linear target property optimization	
	3	1	4	1-Pentanol	3-METHYL-2-BUTANOL			
	4	1	5	1-Pentanol	Toluene		N. I. C	
	5	1	6	1-Pentanol	Undecane		Number of generated blends 1431	
	6	1	7	1-Pentanol	Benzene, propyl-			
	7	1	8	1-Pentanol	2,2-dimethyloctane		L1: Pure component	
	8	1	9	1-Pentanol	2,2,4,4-tetramethylpentane		528 constraints	
	9	1	10	1-Pentanol	3,3-diethylpentane		12: Miscibility	1
	10	1	11	1-Pentanol	Decane		332 constraints	
	11	1	12	1-Pentanol	Ethylbenzene		Cau Cau	1
	12	1	13	1-Pentanol	2,2-dimethylheptane		L3: Linear constraints	
	13	1	14	1-Pentanol	2,4,4-trimethylhexane			
_	14	1	15	1-Pentanol	n-Butyl ether	_	L4: Non-Linear	
	15	1	16	1-Pentanol	2,3,3,4-tetramethylpentane		constraints	
	16	1	17	1-Pentanol	3-METHYL-3-ETHYLPENTANE			
	17	1	18	1-Pentanol	4-Methylnonane(DL)			
	18	1	19	1-Pentanol	5-methylnonane	\checkmark		

Screenshot of step-3 Level3: Linear optimization

🖳 B	lend Design Template						>	
1: F	Problem Definit	tion 2: Ingre	edient Selecti	on 3: Mixture	Blend Desig	n 4: Summa	ary Results Help	
O	biective Functi	on Level 1	Level 2 Leve	el 3 Level 4				
	evel 3: Linear Const	traints	LUTUIL	20101 1				
	Sereen All Pla	nda Blei	nd composition ra	nges are calculate	d for all linear tard	et properties		
	Scieen Airbie	ilus		0				
Г	BlendID	AddID 1	AddID 2	AddName 1	AddName 2	xSurrogate	The MINLP problem is decomposed into 4 sub-levels:	
	1	1	2	1-Pentanol	3-PENTANOL	0.7258661215	Level1: Screening pure compound properties	
	2	1	3	1-Pentanol	2-PENTANOL	0.7043697190	Level2: Analysis of mixture miscibility	
	3	1	4	1-Pentanol	3-METHYL-2	0.7174351370		
	4	1	5	1-Pentanol	Toluene	0.8396402621	Level3: Linear target property optimization	
	5	1	6	1-Pentanol	Undecane	0.7043697190	Level4: Non-linear target property optimization	
	6	1	7	1-Pentanol	Benzene, pro	0.8313894382	•	
	7	1	8	1-Pentanol	2,2-dimethylo	0.7043697190	Number of generated blends 1431	
	8	1	9	1-Pentanol	2,2,4,4-tetram	0.7043697190		
	9	1	10	1-Pentanol	3,3-diethylpe	0.7043697190		
	10	1	11	1-Pentanol	Decane	0.7043697190	528 L1: Pure component	
	11	1	12	1-Pentanol	Ethylbenzene	0.8391779857		
	12	1	13	1-Pentanol	2,2-dimethylh	0.7043697190		
	13	1	14	1-Pentanol	2,4,4-trimethyl	0.7043697190		
	14	1	15	1-Pentanol	n-Butyl ether	0.7043697190		
	15	1	16	1-Pentanol	2,3,3,4-tetram	0.7043697190		
	16	1	17	1-Pentanol	3-METHYL-3	0.7043697190		
	17	1	18	1-Pentanol	4-Methylnona	0.7043697190		
	18	1	19	1-Pentanol	5-methylnona	0.7043697190	. •	
<						>		

Screenshot of step-3 Level4: Non-linear optimization

	Blend D	esign Templa	ate						– 🗆 X
1	Prob	lem Defir	nition 2: Ing	redient Selectio	on 3: Mixture	Blend I	Design 4: S	ummary F	Results Help
	Objec	tive Fund	ction Level 1	Level 2 Leve	el 3 Level 4				
	Level 4	l: Non-Linea	ar Constraints						—
	Scre	en All Blend	s Blend compo	osition ranges are ca	Iculated for all line	ar and			
	Lovel	Deculta	- non-linear tar	get properties					The MINLP problem is decomposed into 4 sub-levels:
	Lever	Disadip		Addblerre 0			1.0.07	L dan 1	
		BlendID	AddiName_1	AddiName_2	xSurro(xAdd1	XAdd2	HHV	Lden_1	Level I: Screening pure compound properties
		208	Decalin	Ethylbonzono	0.834 0.0614	0.1040	46.892457700	775	Level2: Analysis of mixture miscibility
		213	Decalin	Butylbenzene	0.833 0.0716	0.0953	46 909562191	775	Level3: Linear target property optimization
		252	Decalin	Hexylbenzene	0.830 0.0756	0.0943	46.854586056	775	Level 4. New View external events to a time institution
		255	Decalin	Pentylbenzene	0.830 0.0747	0.0951	46.920496343	775	Level4. Non-linear target property optimization
	F R								1421
									Number of generated blends 1431
									1.1
									528 L1: Pure component constraints
									A A A A A A A A A A A A A A A A A A A
									332 L2: Miscibility
									Constraints
									332 L3: Linear constraints
									3
									5 L4: Non-Linear
	<							>	constraints

Screenshot of summary results

	d Design Template									- 0	
Pro	blem Definition	2: Ingr	edient Selection	3: Mixture	Blend Desigr	1 4: Summa	ry Results	Help			
	View Summar Results	у	Product Product Other Name Information	Jet-fuel				÷ Jet 1	RUEL		
Mix	ture Properties										
	BlendID A	AddID_1	AddID_2	AddName_1	AddName_2	xSurrogate	xAdd1	xAdd2	HHV	Lden_1	5C
Þ	252 5		51	Decalin	Butvlbenzene	0 83302879	0.07163083	3 0.09534036	46.9095621	775	
*											
* < =xp	erimental Verificatio	on List —									
* < =xp	erimental Verificatio	on List	TargetProperty	Considered	ExperimentalV	erification					
* < = =xp	erimental Verificatio Performance Ability to be burn	on List	TargetProperty	Considered	ExperimentalVe Reid vapor pres	erification ssure measure	ment				
* < >	erimental Verificatio Performance Ability to be burn Safety	on List	TargetProperty RVP FlashP	Considered	ExperimentalVe Reid vapor pres Flash point mea	erification ssure measure	ment				
* Exp	erimental Verification Performance Ability to be burned Safety Engine efficiency	ed	TargetProperty RVP FlashP HHV	Considered	ExperimentalVe Reid vapor pres Flash point mea Higher heating v	erification ssure measure asurement value measure	ment				
* Exp	erimental Verification Performance Ability to be burn Safety Engine efficiency Engine efficiency	ed 11 12	TargetProperty RVP FlashP HHV Lden_15C	Considered	ExperimentalVe Reid vapor pres Flash point mea Higher heating v Density measur	erification ssure measure asurement value measure rement	ment				
* Exp	erimental Verification Performance Ability to be burn Safety Engine efficiency Engine efficiency Consistency of fi	ed r1 r2 uel flow1	TargetProperty RVP FlashP HHV Lden_15C KinVis20C	Considered	ExperimentalVe Reid vapor pres Flash point mea Higher heating v Density measur Kinematic visco	erification ssure measure asurement value measurer rement osity measurer	ment ment				
* Exp	erimental Verification Performance Ability to be burned Safety Engine efficiency Engine efficiency Consistency of fit Consistency of fit	ed r1 r2 uel flow1 uel flow2	TargetProperty RVP FlashP HHV Lden_15C KinVis20C Tm	Considered	ExperimentalVe Reid vapor pres Flash point mea Higher heating v Density measur Kinematic visco Freezing point r	erification ssure measure asurement value measure rement osity measurer measurement	ment				
* =xp	erimental Verification Performance Ability to be burn Safety Engine efficiency Engine efficiency Consistency of fit Consistency of fit Environmental in	ed r1 r2 uel flow1 uel flow2 npacts	TargetProperty RVP FlashP HHV Lden_15C KinVis20C Tm CO2E	Considered	ExperimentalVe Reid vapor pres Flash point mea Higher heating v Density measur Kinematic visco Freezing point r	erification asure measure asurement value measurer rement osity measurer measurement	ment				
* =xp	erimental Verification Performance Ability to be burn Safety Engine efficiency Engine efficiency Consistency of fr Consistency of fr Environmental in Low toxicity	ed r1 r2 uel flow1 uel flow2 npacts	TargetProperty RVP FlashP HHV Lden_15C KinVis20C Tm CO2E MinlogLC50	Considered	ExperimentalVe Reid vapor pres Flash point mea Higher heating v Density measur Kinematic visco Freezing point r	erification ssure measure asurement value measuren rement osity measuren measurement	ment				
< Exp	erimental Verification Performance Ability to be burn Safety Engine efficiency Engine efficiency Consistency of fit Consistency of fit Environmental in Low toxicity Ability to be burn	ed r1 r2 uel flow1 uel flow2 npacts ed	TargetProperty RVP FlashP HHV Lden_15C KinVis20C Tm CO2E MinlogLC50 Distillation curve	Considered	ExperimentalVe Reid vapor pres Flash point mea Higher heating v Density measur Kinematic visco Freezing point r ASTM distillatio	erification ssure measure asurement value measuren rement osity measuren measurement n temperature	ment				

CHEMICAL PRODUCT DESIGN (CPD)

Why CPD	Synthesize and design chemical products that exhibit desirable target behaviour and test for their performance	NEED	Product Manufacturing
 CPD approaches Experimental-based trial and error approach Computer-aided model-based approach Integrated experimental-modeling approach 			
System Under study	Experimenting 0	ptimized ystem?	213-6-24 2K5 7K5 MIRACLE
Model system	Solu	tion for the system	In America

"I think you should be more explicit here in step two."