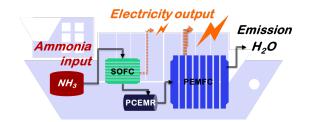


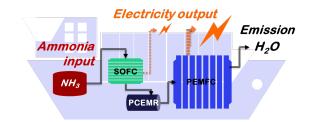
AEGIR – Project overview

AEGIR – Overall project

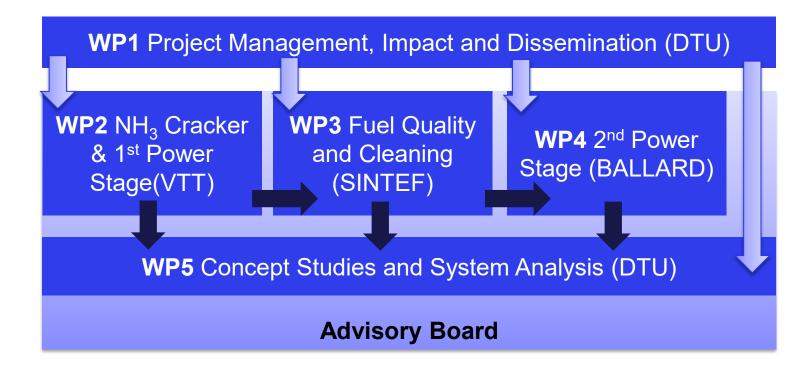
• Ammonia electric marine power for GHG emission reduction


AEGIR - Partners

Partner	Country	DTU
DTU-Technical University of Denmark	DK	DTU
Ballard Power Systems Europe A/S	DK	BALLARD
SINTEF	Ν	() SINTEF
CoorsTEK	Ν	
Vard	Ν	CoorsTek.
VTT	F	a Fincantieri company


AEGIR - Objectives

- Establish a design concept for a fully electric ammonia-fueled ship powertrain without CO₂-emissions and having a tank-to-electricity **efficiency** >60%
- Demonstrate a reduction of GHG emissions >90% compared to current SoA LNG fueled marine engines in a well-to-tank (including emissions from electricity production and ammonia synthesis and logistics) and tank-to-propeller (including the use of the fuel onboard) analysis
- Experimentally validate the three key enabling technologies for the integrated concept aiming at:
 - a degradation rate below 0.3%/1000 h to enable 40000 h lifetime of the SOFC system at >95% ammonia conversion,
 - a hydrogen output from the PCEMR fulfilling the ISO 14687 specifications in terms of NH₃, N₂ and O₂ concentration, and
 - a degradation rate below 0.3%/1000 h to enable 40000 h lifetime of the PEMFC system using the hydrogen purity specifications from the PCEMR.
- Identify potential scale up issues for 20 MW maritime system in a concept study.


AEGIR - Activities

- Design concept of the main system for using NH₃ in marine applications building on integrating the three technologies SOFC, PCEMR, and PEMFC
- GHG emission reduction analysis
- Experimental validation of the three key technologies under the conditions defined in the system layout
- Concept study on scale up issues for large marine vessels requiring electrical power in the range of ca. 20 MW

Aegir – WP structure

