CAHEMA WP3 Engine Experiments

kick-off meeting

Ossi Kaario 09.04.2021

Introduction

- The aim of WP3 is to experimentally characterize ammonia (NH₃) combustion in engines
- Motivation
 - -No carbon \rightarrow no CO_2
 - -No carbon → no soot
- Possible challenges
 - -Very low flame speed. Hydrogen could enhance the situation.
 - -Very high autoignition temperature. Pilot ignition is one solution.
 - -NOx emissions
 - -Low viscosity, gas below 10 bar. Injection/injector problems?

Previous Results

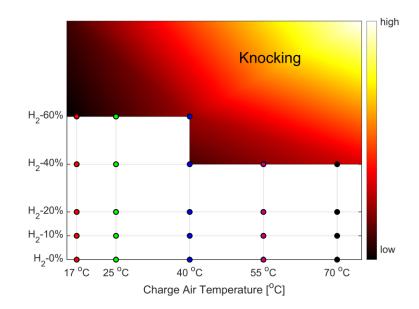
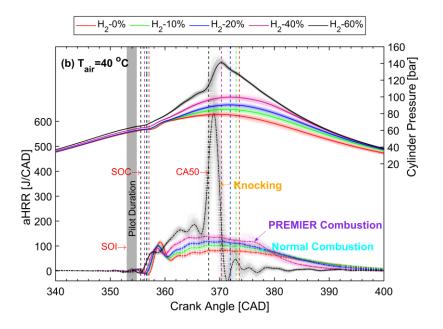
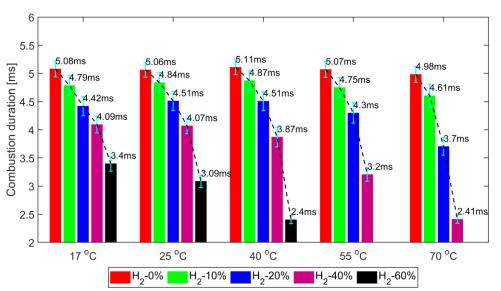

We have lately focused on Tri-Fuel (TF) combustion by using CH₄- H₂ mixture as the main fuel ignited by a diesel pilot

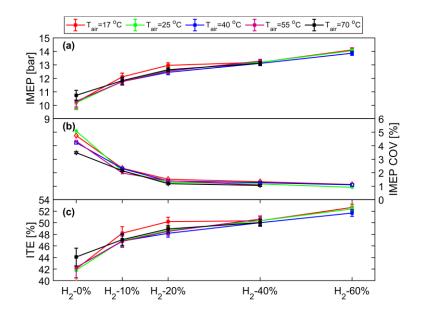
Table 1. Test engine specifications

Engine type	4-Stroke modified single-cylinder diesel engine
Bore	111 mm
Stroke	145 mm
Swept volume	1402 cm ³
Combustion bowl	89.8 cm ³
Vol. compression ratio	16.7:1
Swirl ratio	2.7
Pilot injection system	Bosch piezo CRI3 common rail
Injector no. of holes x diameter	3 x 0.160 mm (symmetric)
Pilot injection pressure	1000 bar
Port fuel injection system	2 x Bosch NGI injectors
Valve system	Electrohydraulic valve actuator

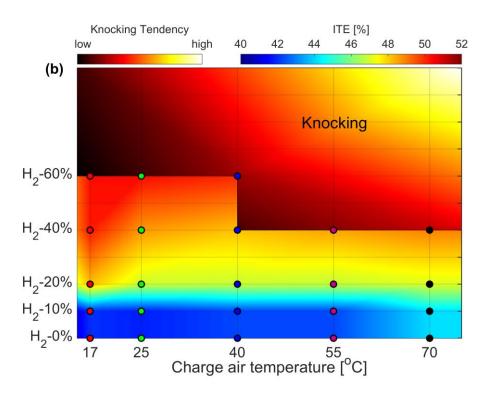

Table 3. Overview of the engine operating conditions

Item	Unit	Value
Engine speed	rpm	1200
SOI	CAD BTDC	7
Pilot injection duration	ms	0.256
$\dot{m}_{ m air}$	kg/h	80
Equivalence ratio	-	0.5
H ₂ mole fraction	mole %	0, 10, 20, 40, 60
Charge-air temperature	°C	17, 25, 40, 55, 70
Pilot energy ratio	%	10
CH ₄ energy ratio	%	90, 87.1, 83.7, 74.9, 61.9
H ₂ energy ratio	%	0, 2.9, 6.3, 15.1, 28.1
Total energy	MJ/h	123, 127, 131, 133, 136



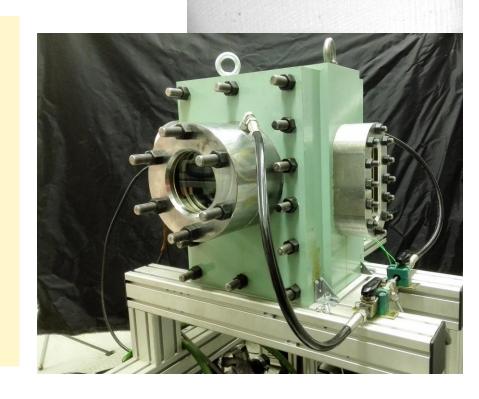

Previous Results

Tri-Fuel (TF) combustion



Previous Results

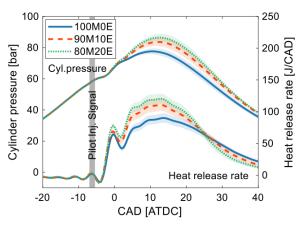
• Tri-Fuel (TF) combustion



Present Cahema research

Spray bomb

- Ammonia testing in the spray bomb
- Spray chamber
 - Non-reactive (N2)
 - max 115 [kg/m^3]
 - 3 windows
 - New: Methanol sprays (incl. drop sizes)

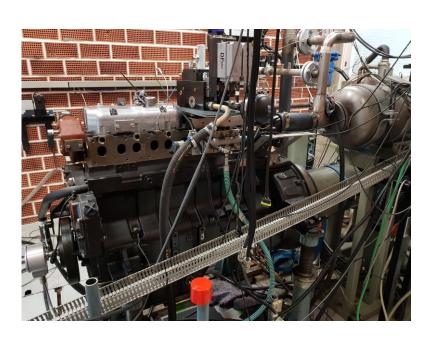
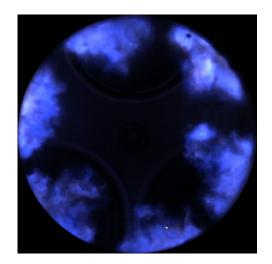


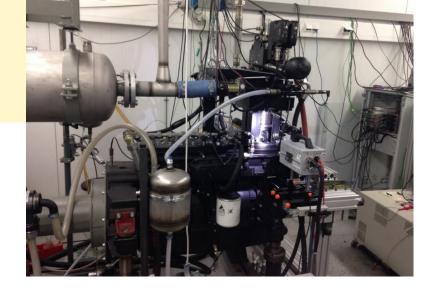
Present Cahema research

Single cylinder research engine

- Ammonia engine tests
 - Port fuel injection of ammonia/H₂
- Ammonia + diesel pilot (DF)
- Ammonia + H₂ + diesel pilot (TF)
- Dual-fuel / Tri-Fuel / RCCI

(a) ω =1500 rpm and P_{PF} =1500 bar


Table 1. Test engine specifications

Engine type	4-Stroke modified single-cylinder diesel engine
Bore	111 mm
Stroke	145 mm
Swept volume	1402 cm ³
Combustion bowl	89.8 cm ³
Vol. compression ratio	16.7:1
Swirl ratio	2.7
Pilot injection system	Bosch piezo CRI3 common rail
Injector no. of holes x diameter	3 x 0.160 mm (symmetric)
Pilot injection pressure	1000 bar
Port fuel injection system	2 x Bosch NGI injectors
Valve system	Electrohydraulic valve actuator

Present Cahema research Optical engine

- Ammonia optical engine tests
- Port fuel injection of ammonia/H₂
- Ammonia + diesel pilot (DF)
- Ammonia + H₂ + diesel pilot (TF)
- Dual-fuel / Tri-Fuel / RCCI

Optical TF combustion (CH₄+H₂+diesel)

Present Cahema research Time table

	2021			2022				2023			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
WP1 Ammonia Rig											
WP2 RCCI											
WP3 Optical Engine											
Mobility and											
short visits											
Publications										4	_
Milestones			ľ	И1 🗸			M2		M3		

M1 Ammonia rig measurements done; M2 Engine ready for RCCI ammonia- H_2 -diesel pilot study; M3 Optical engine ready for ammonia- H_2 tests

Project duration 1.3.2021 – 28.2.2023

