

Concepts of Ammonia/Hydrogen Engines for Marine Application – CFD modeling

Nordic Maritime Transport and Energy Research Programme Workshop, April 20-21, 2022

Xue-Song Bai, Leilei Xu, Mark Treacy, Lund University

www.fm.energy.lth.se

Outline

CAHEMA - Concepts of Ammonia/Hydrogen Engines for Marine Application

CFD study of ammonia/hydrogen/n-heptane RCCI engine performance
 LES study of n-heptane/ammonia RCCI ignition
 RANS study of a four-stroke n-heptane/ammonia/hydrogen RCCI engine

□Concluding remarks and future work

Concepts of Ammonia/Hydrogen Engines for Marine Application

MAN ES AMMONIA ENGINE PROJECT - AENGINE

3

WÄRTSILÄ AMMONIA AND HYDROGEN RESEARCH

NER Workshop, 2022-04-20

LES of n-heptane spray in ammonia/air mixture under RCCI conditions

NER Workshop, 2022-04-20

Case Setup

ECN (engine Combustion Network) – test rig https://ecn.sandia.gov/diesel-spray-combustion/sandia-cv/

ECN Spray H	
Diameter (mm)	0.1
Injected fuel	N-heptane
Duration (ms)	6
Injection pressure (MPa)	150

Ambient conditions (based	l on Spray H)
Temperature (K)	900
Pressure (MPa)	3.81
Density (kg/m ³)	15.0
Φ_a (ambient premixed NH3/air)	0, 0.2, 0.4, 0.6

Sandia CV

- •Ambient gas temperatures from 450 K to 1300 K
- •Ambient gas densities from 3 to 60 kg/m³
- •Ambient gas oxygen concentrations from 0% to 21%
- Injection pressures above ambient from 40 to 200 MPa
 Nozzle sizes from 0.05 to 0.5 mm
- •#2 diesel, single-component reference (n-heptane, cetane), and oxygenated fuels

Case Setup

ECN Spray H	
Diameter (mm)	0.1
Injected fuel	N-heptane
Duration (ms)	6
Injection pressure (MPa)	150

Ambient conditions (based	d on Spray H)
Temperature (K)	900
Pressure (MPa)	3.81
Density (kg/m ³)	15.0
Φ_a (ambient premixed NH3/air)	0, 0.2, 0.4, 0.6

NER Workshop, 2022-04-20

LES model and chemical kinetics

• Combustion mechanism: 69 species = 69 and 389 reactions.

NER Workshop, 2022-04-20

NH3/n-heptane combustion under RCCI conditions

•

• CH₂O: low temperature ignition

• Thermal NO: downstream high T

OH: high temperature ignition

٠

- N_2O is formed prior to NO formation

NH₃ suppresses n-C7H18 auto-ignition

NH₃ increases the liftoff length

NER Workshop, 2022-04-20

NER Workshop, 2022-04-20

NER Workshop, 2022-04-20

LES results – major findings

Ammonia suppresses the auto-ignition of diesel/n-heptane
 The higher the ammonia/diesel ratio, the slower the diesel ignition
 Implication to engine operation: earlier diesel injection
 NOx in the mixing layer
 Thermal NO is formed in the downstream region of the flame
 Fuel NO is several times of thermal NO
 N₂O formation and consumption
 N₂O is formed prior to NO formation
 N₂O is consumed when forming NO

RANS study of ammonia/hydrogen/n-heptane RCCI engine

NER Workshop, 2022-04-20

NER Workshop, 2022-04-20

Model Validation (methanol and iso-octane)

Dept of Energy Sciences, Lund University

NER Workshop, 2022-04-20

Dept of Energy Sciences, Lund University

NH3 (premixed) + N-heptane (injected)

Case Name	EP	X _{NH3}	Φ ₀ (premix)	Injected Duration °CA (N-heptane)	Description
Diesel	0	0	0	5.292	Diesel Engine
EP03	0.3		0.106	4.230	
EP05	0.5		0.177	3.438	
EP06	0.6	1	0.212	3.015	RCCI engine
EP07	0.7		0.248	2.556	
EP08	0.8		0.283	2.034	

Total energy in the cylinder: 2000 J/cyc, 4 bar IMEP

NER Workshop, 2022-04-20

NH3 Engine performance

- The ignition delay time for the NH3 RCCI engine is shorter due to the shorter injection;
- Ammonia is hardly burned completely;
- If the EP is greater than 0.5, the combustion efficiency of the ammonia becomes worse;
- N₂O/NO₂/NO emissions are much higher than that of diesel engine.

NH3/H2 (premixed) + N-heptane (injected)

 X_{NH3} (NH3 mole fraction): $X_{NH3} = \frac{C_{NH3}}{C_{NH3} + C_{H2}}$

Case Name.	EP	Injected Duration •CA (N-heptane)	X _{NH3}	Φ ₀ (premix)	X _{NH3}	Φ ₀ (premix)	X _{NH3}	Φ ₀ (premix)
EP03	0.3	4.230		0.105		0.103		0.101
EP05	0.5	3.438	0.9	0.175		0.172		0.168
EP06	0.6	3.015		0.210	0.7	0.206	0.5	0.201
EP07	0.7	2.556		0.245		0.240		0.235
EP08	0.8	2.034		0.280		0.275		0.268

NER Workshop, 2022-04-20

NER Workshop, 2022-04-20

NER Workshop, 2022-04-20

Dept of Energy Sciences, Lund University

Dept of Energy Sciences, Lund University

Auto-ignition

Dept of Energy Sciences, Lund University

NER Workshop, 2022-04-20

Dept of Energy Sciences, Lund University

NH3 RCCI engine (Medium load)

Medium load:

Total energy in the cylinder: 5000 J/cyc, IMEP 10bar

Case Name	EP	X _{NH3}	Φ ₀ (premix)	Injected Duration °CA (N-heptane)	Description
Diesel	0	0	0	8.393	Diesel Engine
EP03	0.3		0.265	6.494	
EP05	0.5	1	0.442	5.184	RCCI engine
EP06	0.6	1	0.530	4.493	NH3 premixed
EP08	0.8		0.707	2.923	

NH3/H2 mixture premixed

EP03	0.3		0.263	6.494	
EP05	0.5	0.0	0.438	5.184	NH3/H2
EP06	0.6	0.9	0.525	4.493	premixed
EP08	0.8		0.701	2.923	

12 Diesel EP03 10 - EP05 EP06 Flow Rate (kg/s) EP08 8 6 4 2 0 -5 -3 -7 -1 3 5 1 Crank Angle (°CA ATDC)

NER Workshop, 2022-04-20

Engine performance

NH3

✓ Automatic	жU
Hidden	光
Visible	ЖA
Pen	ЖP
Laser Pointer	ЖL
Highlighter	
Eraser	
Erase Pen	ΦE
Pen Colour	•
Laser Colour	•

NER Workshop, 2022-04-20

Dept of Energy Sciences, Lund University

NER Workshop, 2022-04-20

Dept of Energy Sciences, Lund University

NH3 RCCI engine (high load)

High load: total energy in the cylinder: 7500 J/cyc, IMEP 15bar

	The global $\Phi \sim 1.3$, Thus, increasing the intake pressure (supercharging) Intake pressure: 1.2 bar \rightarrow 1.6 bar T_{in} : 458K \rightarrow 330K								
SOI: -7 °CA ATDC \rightarrow -13 °CA ATDC					Promote	e the ignition of d	iesel		
	Case Name	EP	X _{NH3}	Φ ₀ (premix)	Injected Duration °CA (N-heptane)	Description			
	Diesel	0	0	0	11.556	Diesel Engine			
	EP03	0.3		0.209	8.712				
	EP05	0.5	1	0.348	6.811	RCCI engine			
	EP06	0.6	1	0.418	5.846	NH3 premixed			
	EP08	0.8		0.557	3.751				

NH3/H2 mixture premixed

		-			
EP03	0.3		0.207	6.494	
EP05	0.5	0.0	0.345	5.184	NH3/H2
 EP06	0.6	0.9	0.414	4.493	premixed
EP08	0.8		0.552	2.923	

Engine performance

Dept of Energy Sciences, Lund University

NX{NH3}=0.9

Summary and future work

LES of n-heptane/ammonia RCCI ignition

□ Fuel chemistry interaction – suppression of auto-ignition

- □ NO and N₂O flame structures
- CFD simulation of diesel/ammonia/hydrogen RCCI engine performed
 - Baseline engine tested for gasoline and methanol
 - □ Engine performance simulated
 - Three different loads
 - □ NH₃, NO, N₂O emissions
 - Effect of H2 on ammonia combustion
- Engine validation
 - NTNU/Aalto
 - UWärtsilä engine

Summary and future work

CFD simulation of Wärtsilä four-stroke engine

- Ongoing experiments at Wärtsilä
- NDA signed
- CFD meshing of engine geometry in progress
- RCCI concept
- DDFS concept
- CFD simulation of MAN two-stroke engine

Thank you for your support

Researcher Leilei Xu (50%)

NER Workshop, 2022-04-20