INTERCONNECTING THE BALTIC SEA COUNTRIES VIA OFFSHORE ENERGY HUBS

Joint Baltic-Nordic Research Programme Conference 25.10.2022

Hardi Koduvere

INTRODUCTION

- The main objective of BaltHub is to study the costeffectiveness of Baltic Sea offshore energy hubs for driving green transition in Baltic Sea countries.
- Potential benefits of offshore energy hubs in the Baltic Sea
 - Including the meshed offshore grid to connect them
- Range of scenarios towards 2050 are studied
 - With different levels of electrification
- Balthub partners
 - DTU (Wind + Management)
 - TalTech
 - Sintef
 - Kaunas Technical University

Wind power capacity factors in the Baltic Sea region (<u>https://globalwindatlas.info/</u>)

MODELLIONG OFFSHORE ENERGY ISLANDS WAKE LOSSES

STUDIED SCENARIOS

Scenario	Electric heating (household & industry)	Electric mobility	Hydrogen demand (industry & transport fuels)
Heat only	Optimized	-	-
Heat and Elec. Mobility	Optimized	Operation optimized	-
All Electrified	Optimized	Operation optimized	Operation optimized

All analysed countries shown in dark grey. The Baltic Sea region countries are: Denmark (DK), Sweden (SE), Finland (FI), Estonia (EE), Latvia (LV), Lithuania (LT), Poland (PL), and Germany (DE).

RESULTS (ALL ANALYZED COUNTRIES): ELECTRIC LOAD

TAL

RESULTS (ALL ANALYZED COUNTRIES): ELECTRICITY GENERATION

TAL

RESULTS (ALL ANALYZED COUNTRIES): HEAT AND HYDROGEN GENERATION

TAL

Production (TWh) - All countries

RESULTS: BALTIC SEA REGION

https://windeurope.org/intelligence-platform/product/our-energy-our-future/

Offshore GWs per sea area in the most electrified scenario:

Sea area	2025 (GW)	2035 (GW)	2045 (GW)
North Sea	15	158	238
Radial	15	35	53
Hub		123	186
Baltic Sea	6	32	82
Radial	6	14	47
Hub		17	35
Atlantic	7	13	65
Ocean		13	03

HUBS INVESTED – ALL ELECTRIFIED

TAL TECH

	2045 (GW)
Baltic Sea	82
Radial	47
Hub	35

- Note: unfeasible small lines may appear in the maps, as the results are from linear optimisation
- MIP optimisation, to find more realistic line sizes, is being carried out

HUBS INVESTED – HEAT & ELEC. MOBILITY

TAL TECH

	2045 (GW)
Baltic Sea	58
Radial	31
Hub	27

- Note: unfeasible small lines may appear in the maps, as the results are from linear optimisation
 MIP optimisation, to find more
- MIP optimisation, to find more realistic line sizes, is being carried out

HUBS INVESTED – HEAT ONLY

TAL TECH

Some of the hubs remain competitive compared to radially connected offshore wind even in the least electrified scenario

	2045 (GW)
Baltic Sea	15
Radial	4
Hub	11

- Note: unfeasible small lines may appear in the maps, as the results are from linear optimisation
- MIP optimisation, to find more realistic line sizes, is being carried out

CONCLUSIONS

- The largest deployment of offshore hubs occurs when the energy system is highly electrified
 - Offshore wind becomes the dominant wind technology by 2050 in the most electrified scenarios
- Southern part of Baltic Sea sees the strongest development of hubs
 - Poorest wind resource locations seen unsuitable for offshore energy hubs
- Overall deployment of offshore wind less compared to the North Sea
 - The optimal hub sizes in the Baltic Sea are foreseen to be smaller than in the North Sea
- The hubs are utilised to interconnect the onshore power systems of the Baltic Sea region's countries
 - More detailed MIP runs being carried out to analyse optimal line sizes

 The grid simulations ongoing with PowerGIM to explore robust grid expansion strategies

TALLINN UNIVERSITY OF TECHNOLOGY

taltech.ee/en