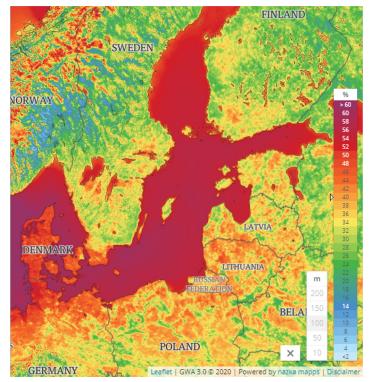


BaltHub final workshop:


Offshore energy hubs in the Baltic Sea

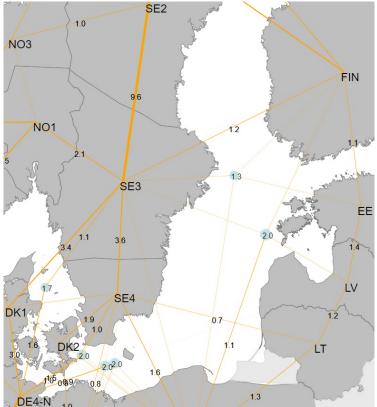
Matti Koivisto, Rasmus Bramstoft, Polyneikis Kanellas (DTU) Jonas Vaičys, Saulius Gudžius, Audrius Jonaitis (KTU) Hardi Koduvere (TalTech) Online presentation 25 Jan 2023

1

Agenda

- Introduction to the BaltHub project and research questions
- Results: Role of offshore energy islands in the Baltic Sea towards 2050
- Methods: Modelling offshore energy islands for energy system analyses

Baltic Sea offers capacity factors only slightly lower than the North Sea


Source: https://globalwindatlas.info/en

Interconnecting the Baltic Sea countries via offshore energy hubs (BaltHub)

- BaltHub analyses the cost-effectiveness of Baltic Sea energy hubs
 - Wind power connected far offshore where wind speeds are high
 - Hubs interconnect the onshore energy systems
 of the Baltic Sea countries

Funded by the Nordic Energy Research

- 2021-2022
- Via the Baltic-Nordic Energy Research
 Programme

Offshore energy hubs can be used to integrate the onshore power systems of the region

DTU

BaltHub: Partners and Observers

• Partners:

- Technical University of Denmark (DTU), Denmark
 » DTU Wind Energy & DTU Management
- SINTEF, Norway
- Tallinn University of Technology (TalTech), Estonia
- Kaunas University of Technology (KTU), Lithuania

• Observers

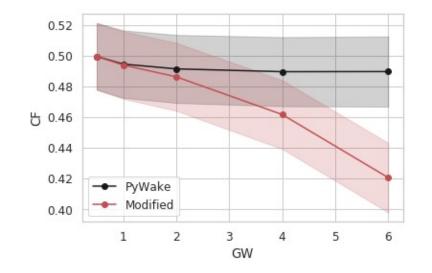
- Fingrid, Finnish TSO
- Energinet, Danish TSO
- Elering, Estonian TSO
- LITGRID, Lithuanian TSO

BaltHub: Research questions

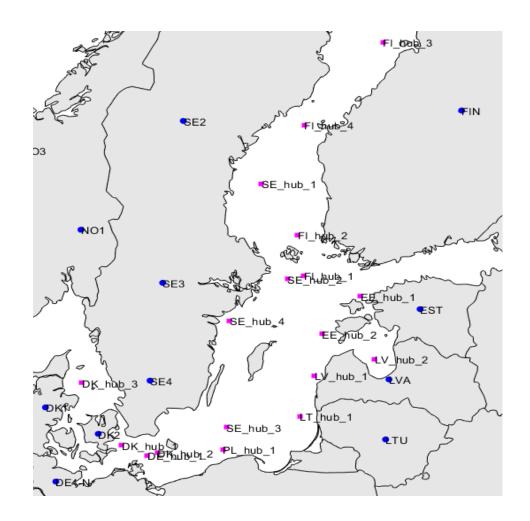
- 1. Are offshore energy hubs a cost-effective solution for driving green transition in Baltic Sea countries?
 - How is this impacted by key input parameters?
- 2. Do large-scale wake losses jeopardize the cost-effective buildout of such hubs?
- 3. Are the hubs beneficial in interconnecting the Baltic Sea region's countries?
- 4. What are the optimal here-and-now offshore infrastructure investment decisions?
 - Considering uncertainty of the future

BaltHub results

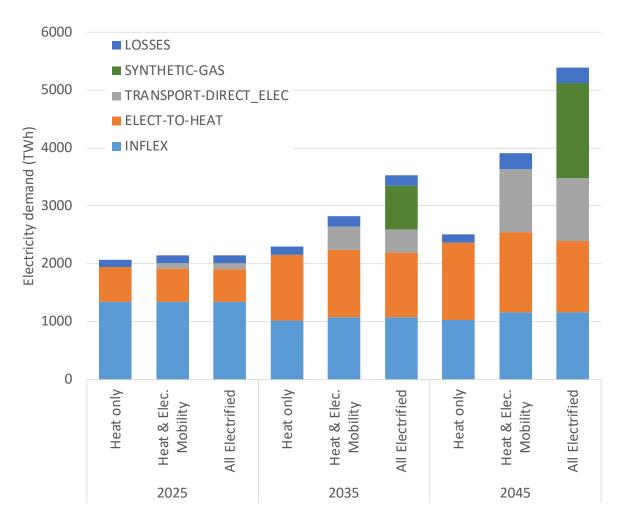
Studied scenarios



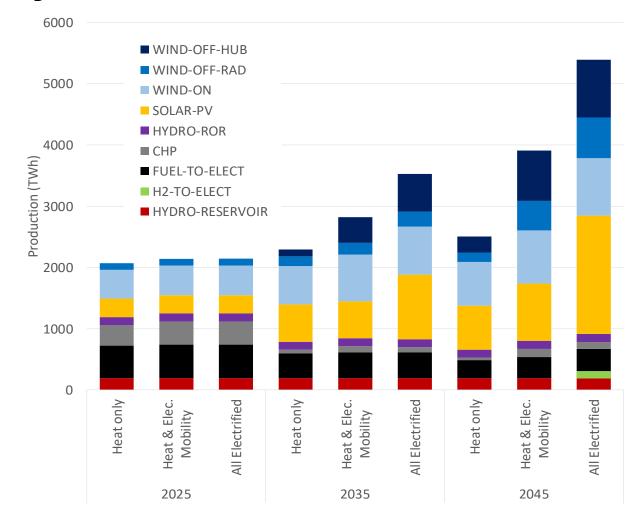
All analysed countries shown in dark grey. The Baltic Sea region countries are: Denmark (DK), Sweden (SE), Finland (FI), Estonia (EE), Latvia (LV), Lithuania (LT), Poland (PL), and Germany (DE).


More ele	Scenario	Heating (household & industry)	Electric mobility	Hydrogen demand (industry & transport fuels)
electrification	Heat only	Optimized	-	-
ation	Heat and elec. mobility	Optimized	Operation optimized	-
	All Electrified	Optimized	Operation optimized	Operation optimized

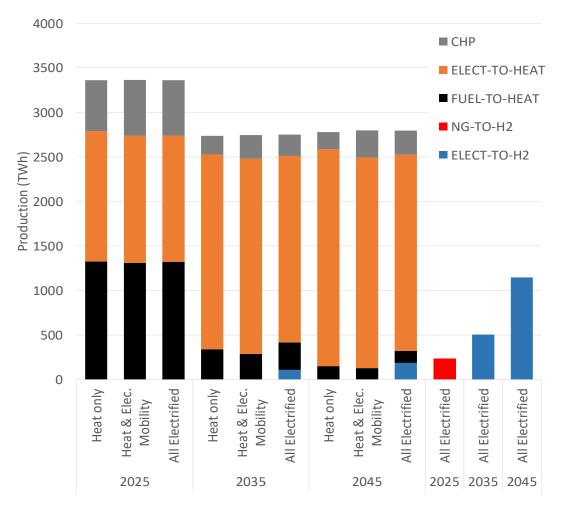
Results: Wake losses



- The red (Modified) curve shows losses when also the large-scale (mesoscale) wakes are considered
 - Significant impact after 2 GW size
 - Note: uncertainty remains in estimating wake
 losses for very large hubs

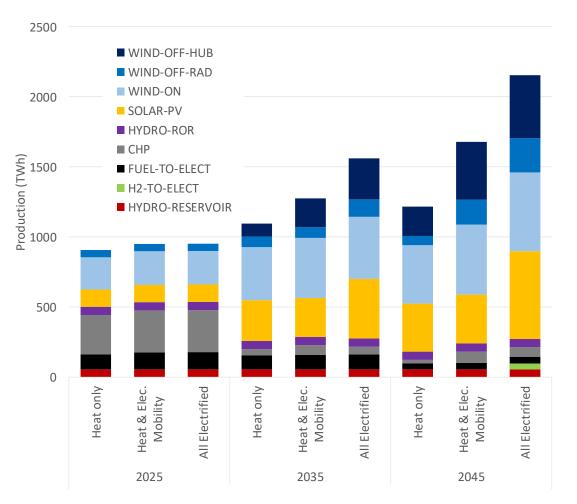


Results (all analyzed countries): Electric Load



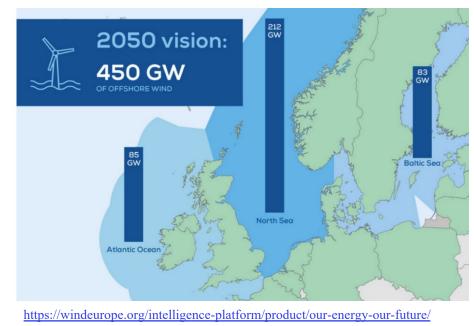
Results (all analyzed countries): Electricity Generation

Results (all analyzed countries): Heat and hydrogen Generation

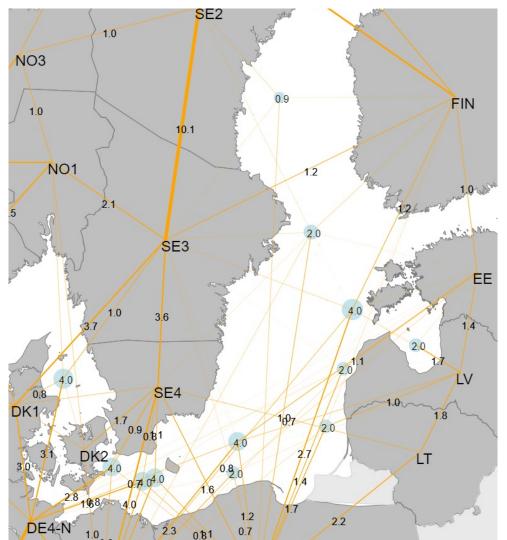

M. Koivisto, et al., "Offshore energy hubs: Cost-effectiveness in the Baltic Sea energy system towards 2050, "Wind Integration Workshop, 2022

DTU

=


Results: Baltic Sea region

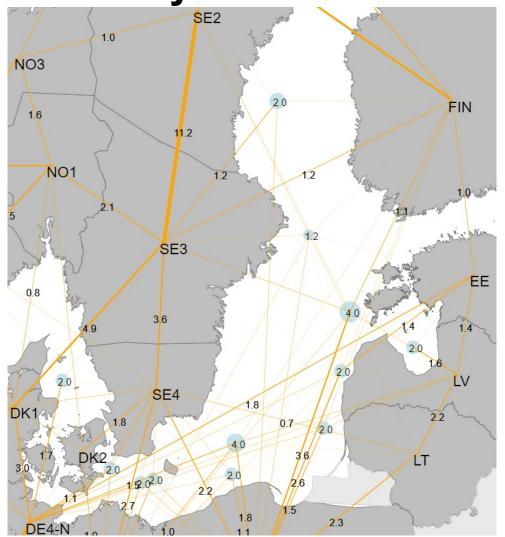
Offshore GWs per sea area in the most electrified scenario:


Sea area	2025 (GW)	2035 (GW)	2045 (GW)
North Sea	15	158	238
Radial	15	35	53
Hub		123	186
Baltic Sea	6	32	82
Radial	6	14	47
Hub		17	35
Atlantic Ocean	7	13	65

Comparison to WindEurope numbers:

Hubs Invested: All Electrified

Very high electrification scenario

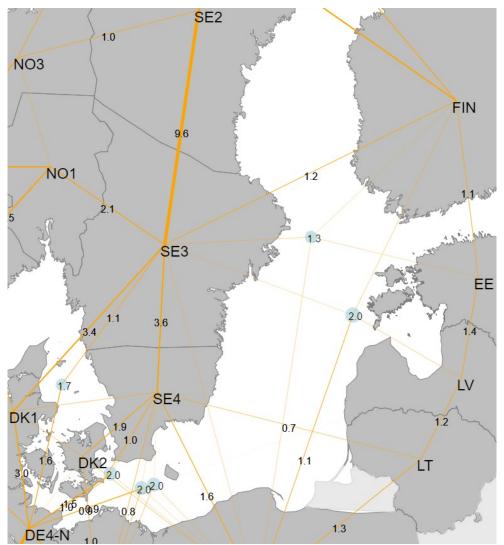

Installed offshore wind:

	2045 (GW)
Baltic Sea	82
Radial	47
Hub	35

- Note: unfeasible small lines may appear in the maps, as the results are from linear optimisation
- MIP optimisation, to find more realistic line sizes, is being carried out

Hubs Invested: Heat & Elec. Mobility

Medium electrification scenario


Installed offshore wind:

	2045 (GW)
Baltic Sea	58
Radial	31
Hub	27

- Note: unfeasible small lines may appear in the maps, as the results are from linear optimisation
- MIP optimisation, to find more realistic line sizes, is being carried out

Hubs Invested: Heat only

Low electrification scenario

Installed offshore wind:

	2045 (GW)
Baltic Sea	15
Radial	4
Hub	11

Some of the hubs remain competitive compared to radially connected offshore wind even in the least electrified scenario

- Note: unfeasible small lines may appear in the maps, as the results are from linear optimisation
- MIP optimisation, to find more realistic line sizes, is being carried out

Hydrogen Pipes Development: All Electrified

Installed electrolysers:		
	2045 (GW)	
Baltic Sea region	117	
Onshore	115	
Offshore	2	

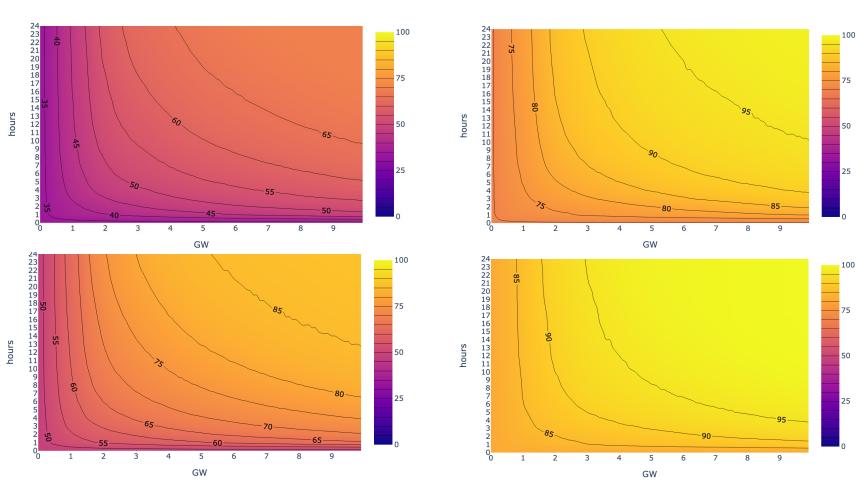
Electrolysers are mostly installed onshore

- The placement of electrolysers onshore is aligned with results from similar modelling in the North Sea region¹
- Many factors impact the onshore vs. offshore placement of hubs
 - As it is not in the focus of this study, it is not analysed further
 - Note: In these runs, solar PV in Central/Southern Europe is driving hydrogen investments and production

¹J. Gea-Bermúdez, R. Bramstoft, M. Koivisto, L. Kitzing, A. Ramos, "Going offshore or not: Where to generate hydrogen in future integrated energy systems?", *Energy Policy*, vol. 174, March 2023 (https://doi.org/10.1016/j.enpol.2022.113382).

DTU

Focus on the Baltic States: Renewable generation share and flexibility needs


2035

2045

Without the hubs and meshed grid

With the hubs and meshed grid

-> higher renewable generating share with less flexibility required from within the Baltic States

Focus on the Baltic States: Renewable generation share and flexibility needs

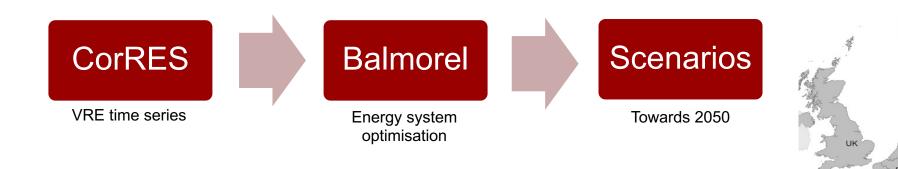
- 1. The most electrified scenario (All Electrified) was analyzed with focus on the Baltic States
 - It is the most ambitious scenario, including reaching challenging goals in transport and heating transition and hydrogen expansion
- 2. Offshore energy hubs and related grid help to reach larger renewable generation share (share of total consumption)
 - 15-20 percentage point higher in 2035 (for the same flexibility requirement)
 - With the hubs and currently installed flexibility technologies in the Baltic States, a 60-65 % renewable generation share could be reached in 2035
- 3. The hubs enable to reach up to 100 % renewable generation share by 2050
 - But requires additional energy storage installations (compared to today)
 - Without the hubs, the maximum renewable generation share, even when installing additional energy storage of up to 24 hours duration, would be 85-92 %

DTU

Conclusions on BaltHub results

- 1. Most hubs seen when the energy system is highly electrified
 - And offshore wind becomes the dominant wind technology by 2050
 - The hubs are a cost-effective technology

2. Southern part of the Baltic Sea sees the strongest development of hubs


- Poorest wind resource locations seen unsuitable for offshore energy hubs
- Impacted by large-scale wake losses
- 3. Overall deployment of offshore wind less compared to the North Sea
 - Hub sizes in the Baltic Sea are foreseen to be smaller than in the North Sea
- 4. The hubs are utilised to interconnect the onshore power systems of the Baltic Sea region's countries
 - More detailed MIP runs required to analyse optimal line sizes (next presentation)
- 5. The hubs enable to reach up to 100 % renewable generation share in the Baltic States by 2050

Modelling offshore energy islands

Methodology overview

For example for studying:

- Offshore energy hubs & meshed grids^{1,2}
- Impact of sector coupling³

¹J. Gea-Bermúdez et al., "Optimal generation and transmission development of the North Sea region: impact of grid architecture and planning horizon", *Energy*, 2020 (<u>https://doi.org/10.1016/j.energy.2019.116512</u>) ²M. Koivisto, et al., "North Sea offshore Grid development: Combined optimization of grid and generation investments towards 2050", *IET Renewable Power Generation*, 2020 (<u>https://doi.org/10.1049/iet-rpg.2019.0693</u>) ³J. Gea-Bermúdez, et al., "The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050", *Applied Energy*, 2021 (<u>https://doi.org/10.1016/j.apenergy.2021.116685</u>)

SE1

SF2

SE3

NO3

NO5

FR

NO1

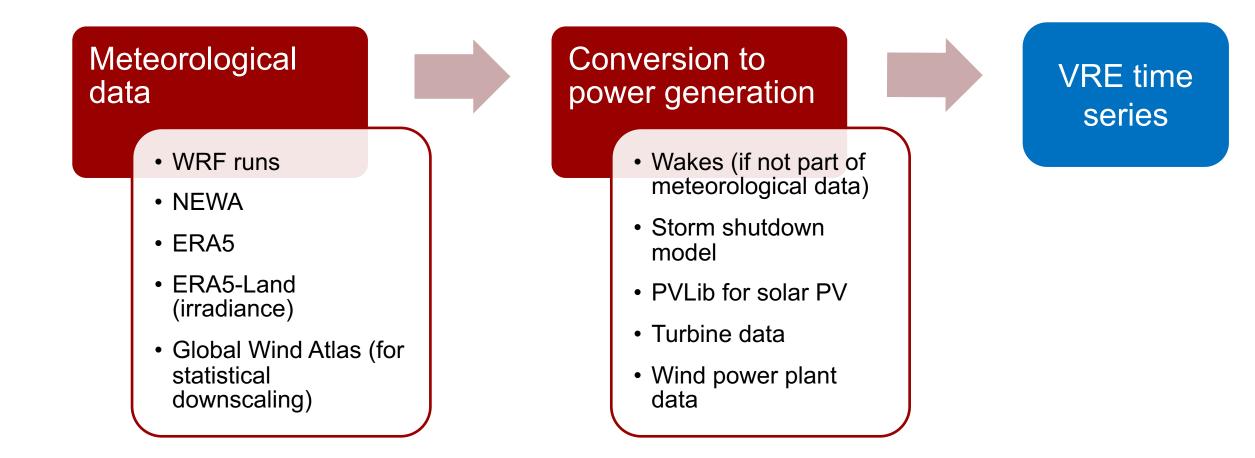
DE4-N

DE4-W DE4-E

DE4-S

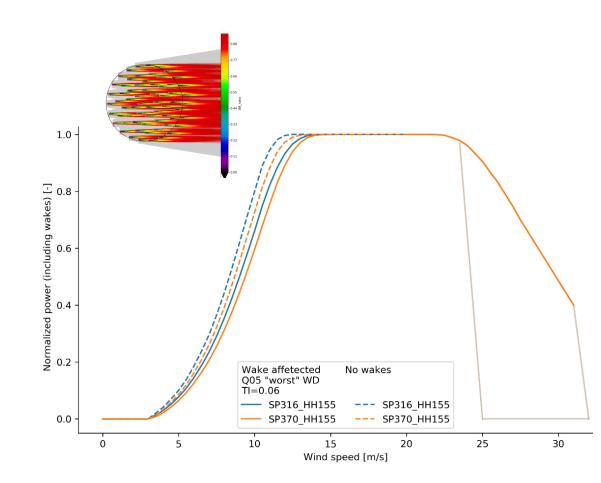
Correlations in renewable energy sources (CorRES)

- A time series simulation tool for variable renewable energy
- Developed at DTU Wind Energy


- Using reanalysis time series and microscale data¹
- Sub-hourly simulation capabilities^{2,3}

¹J. P. Murcia, et al., "Validation of European-scale simulated wind speed and wind generation time series", *Applied Energy*, 2022 (https://doi.org/10.1016/j.apenergy.2021.117794) ²J. P. Murcia Leon, et al., "Power Fluctuations In High Installation Density Offshore Wind Fleets", *Wind Energy Science*, 2021. (https://doi.org/10.5194/wes-6-461-2021) ³M. Koivisto, et al., "Combination of meteorological reanalysis data and stochastic simulation for modelling wind generation variability", *Renewable Energy*, 2020 (https://doi.org/10.1016/j.renene.2020.06.033)

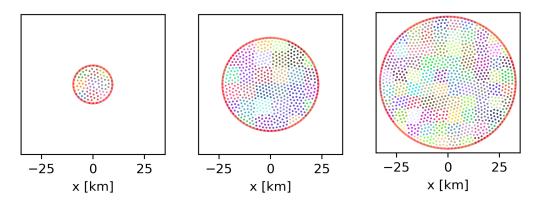
https://corres.windenergy.dtu.dk/


CorRES: Modelling VRE generation variability

CorRES: Modelling wakes

- Micro-scale wake models available in PyWake¹
 - The main approach used in CorRES
 - Can be applied in energy system optimisation²
- Meso-scale wake models³
 - Include the impact of very large plants removing kinetic energy from the atmosphere
 - Use in energy system optimisation quite new (used in the BaltHub)

¹M. M. Pedersen, et al., DTUWindEnergy/PyWake: PyWake, 2019 (<u>https://doi.org/10.5281/zenodo.2562662</u>)

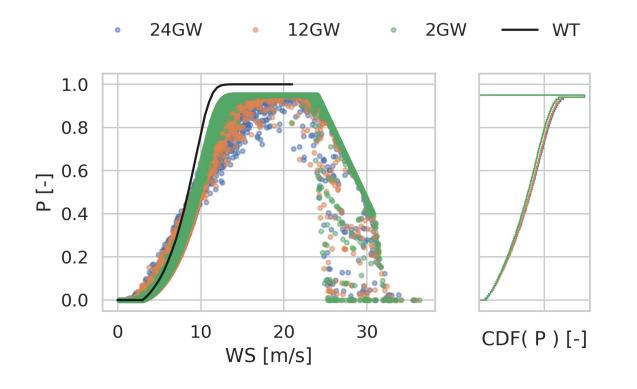

²J. Gea-Bermúdez, et al., "The Value of Sector Coupling for the Development of Offshore Power Grids", *Energies*, 2022 (https://doi.org/10.3390/en15030747)

³P. J. H. Volker, et al., "Prospects for generating electricity by large onshore and offshore wind farms", Environmental Research Letters, 2017 (https://doi.org/10.1088/1748-9326/aa5d86)

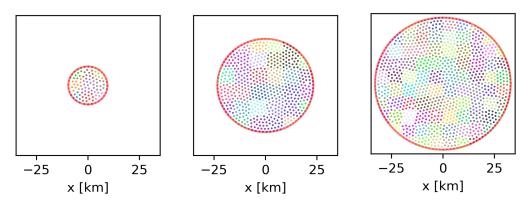
CorRES: Modelling hubs for energy system analyses

- We want to considered hub size in the energy system optimisation
 - Economies of scale¹ (+)
 - Required cable length² (+/-)
 - Increasing wake losses² (-)
- Each hub is modeled in detail in CorRES
 - Variation in resource
 - Ramps in detail using sub-farms
 - Storm shutdown³

Layouts for 2GW, 12GW and 24GW hubs. Each sub-farm is shown in different color.

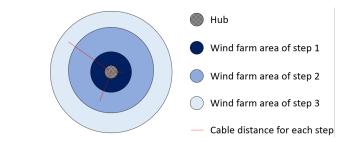

²J. Gea-Bermúdez, et al., "The Value of Sector Coupling for the Development of Offshore Power Grids", *Energies*, 2022 (https://doi.org/10.3390/en15030747)

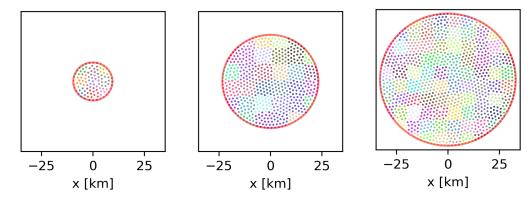
³J. P. Murcia Leon, et al., "Power Fluctuations In High Installation Density Offshore Wind Fleets", Wind Energy Science, 2021. (https://doi.org/10.5194/wes-6-461-2021)


¹J. Gea-Bermúdez, et al., "Optimal generation and transmission development of the North Sea region: impact of grid architecture and planning horizon", *Energy*, 2020 (<u>https://doi.org/10.1016/j.energy.2019.116512</u>)

CorRES: Why consider sub-farms?

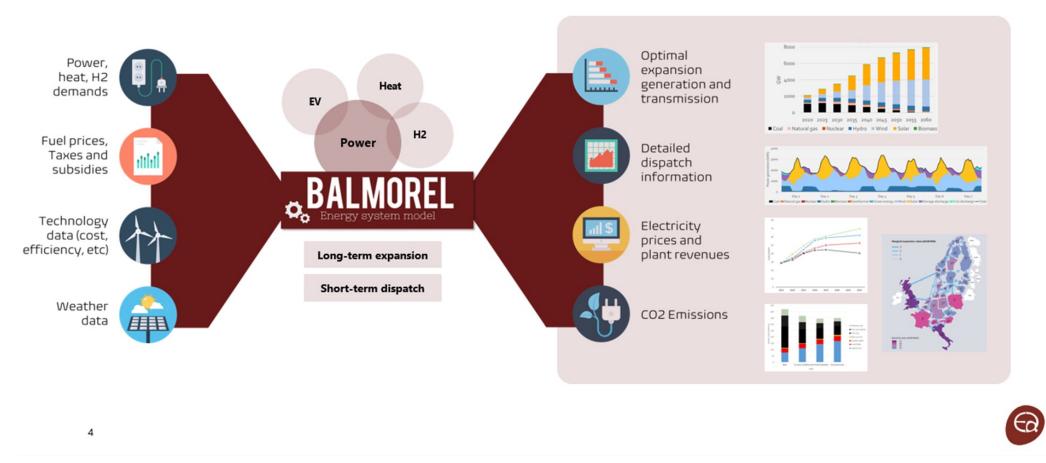
- With very large hubs, the hub-level power curve starts to smoothen significantly
 - Captured by having the GW split to sub-farms



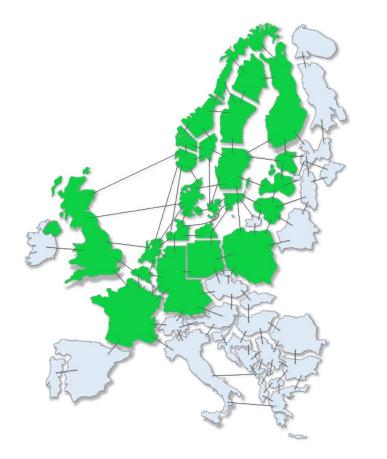

Layouts for 2GW, 12GW and 24GW hubs. Each sub-farm is shown in different color.

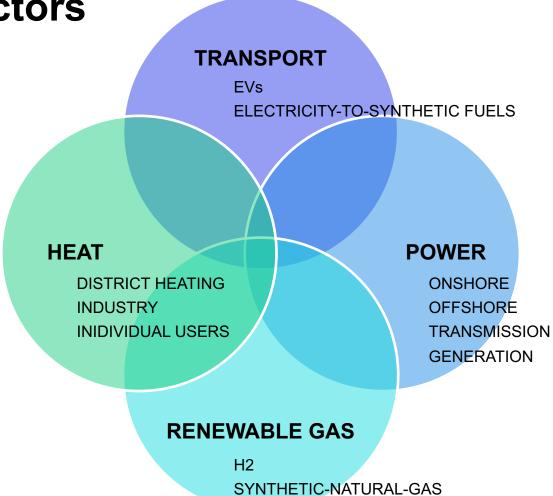
CorRES to Balmorel: The specific hubs modelled

- Circular energy hubs are analysed
 - 2, 12, and 24 GW for the North Sea
 - 2, 4, and 6 GW for the Baltic Sea
 - Capacity density of 7 MW/km2
- In steps in the Balmorel optimisation; e.g., for the North Sea:
 - 2 GW
 - 12 GW (= 2 + 10)
 - 24 GW (= 2 + 10 + 12)
- 18 MW turbines with 340 W/m2 specific power
- Hub height of 150 m



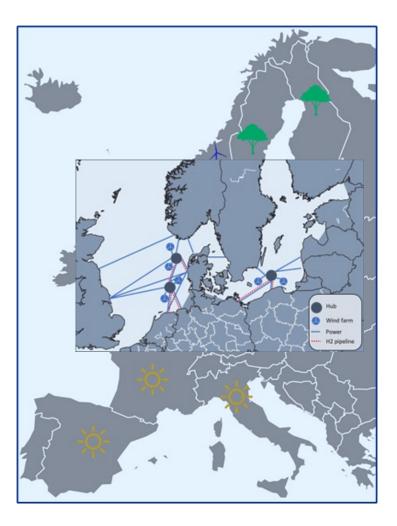
Layouts for 2GW, 12GW and 24GW hubs. Each sub-farm is shown in different color.

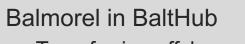

Balmorel energy system model



Source: Ea Energianalyse

Balmorel: Geographic scope & sectors





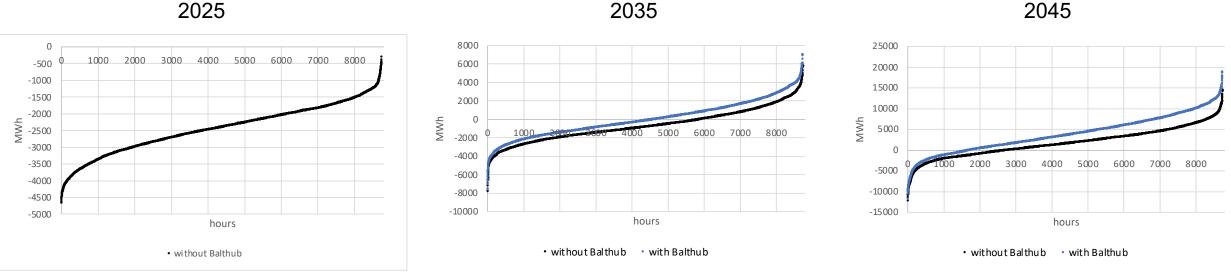
J. Gea-Bermúdez, et al., "The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050", Applied Energy, 2021 (https://doi.org/10.1016/j.apenergy.2021.116685)

Balmorel: Focus on offshore wind

- Transferring offshore grid modelling from the North Sea to the Baltic Sea
- Optimise generation from offshore wind, its locations, as well as it connection to shore (radial vs hub, i.e. connection to more countries)

Focus on the Baltic States: Renewable generation share and flexibility needs

- The most electrified scenario is used in the analysis as this scenario is likely considering Baltic States goals described in National Strategies.
- Total energy consumption (demand) forecasts in Baltic states consists of 4 main parts: heat, hydrogen, electric vehicles, and exogenous part.
- Energy demand is expected to almost triple from 2025 to 2045 due to electrification, especially, in hydrogen sector.
- In the span of 20 years hydrogen will add to the total demand 30.8 TWh and the total demand will reach 73.68 TWh.
- Such increase in the demand also requires investments in renewable energy sources to meet the obligations to EU.



Focus on the Baltic States: **Renewable generation share and flexibility needs**

 $balance_i = generation_i - demand_i$

With BaltHub = including the offshore energy hubs and the related grid in the calculations

(1)