

Hydrogen from Green Surplus Energy in Isolated Areas for Sea and Land-based Transport (Faroelyzer)

Shi You, PhD

Senior Researcher

Technical University of Denmark

Kári Mannbjørn Mortensen,

Head of Energy Department

Faroese Environment Agency

Agenda

- **>** Background
- > Faroelyzer introduction
- ➤ Interim findings
- ➤ Results summary and next step

Faroe Islands' energy transition: background

General data:

- 18 islands (17 are populated)
- 51,000 inhabitants
- Area of 1,399km²
- Main export: Fish and fish products
- "Micro isolated system" in EU terms (< 500GWh @ 1996)

Faroe Islands' energy transition: status

Electricity

- Just over 50% renewable electricity in 2022
- Aim for 100% renewable electricity in 2030

Total energy consumption

- However, electricity accounts for only 11% of total energy consumption of the Faroe Islands
- Meanwhile, 54% of energy consumption comes from sea and land transport
 - 11% land based
 - 43% sea based

Faroe Islands' energy transition: target

100% renewable electricity in 2030 and no oil use on land, if

- Increased electricity production from renewables
- Increased consumption of electricity in all sectors, particulary Maritime
- Techno-economic viability of PtX
- Resilient energy infrastructure

PtX: indirect electrification based on green H2

Faroelyzer – Who, What and How

The objective investigate the techno-economic feasibility of using electrolyser-based PtX to support the green transition of Faroe islands

The consortium

- SEV Common electricity company of Faeroe Islands/<u>SEV</u>
- ORKA Umhvørvisstovan Faeroese Environment Agency/Orka (us.fo)
- DTU DTU Wind and Energy Systems/<u>DTU Wind</u>
- NORA Nordisk Atlantsamarbejde/<u>NORA Projects</u>

Interim findings – An overview of electrolyzer technologies

CAPEX (€/kW)						
		2020	2025			
AEC	10 MW	1900	1400			
	100 MW	1200	875			
	1 GW	1100	800			
PEMEC	10 MW	1900	1425			
	100 MW	1300	975			
	1 GW	1200	900			
SOEC	1 MW	4000	2875			
	10 MW	2900	2075			
	100 MW	1800	1300			

Interim findings – Schematic of an electrolyzer plant

Interim findings – Off-the-shelf Electrolyzer products

Source: Jin, X., You, S., Petersen, M., Riofrio, J., Thakur, S., Træholt, C., & Feng, Z. (2024). Exploring commercial water electrolyser systems: a data-based analysis of product characteristics. *Clean Energy*, 8(1), 126-133.

Interim findings – Dynamic performance of electrolyzer

Characteristic	Time horizon	Alkaline	PEM	SOEC		
Flexibility						
Load range (relative to nominal load) The overload condition can be kept for a limited amount of time, requires oversized equipment and entails efficiency losses.	Today	10-110%	0-160%	20-125%		
	2030	Expected by 2050: 5 – 300 %	Expected for 2050: 5-300%	Expected for 2050: 0-200%		
Start-up time (warm, cold)	Today	1-10 minutes	1 second – 5 minutes	< 60 minutes		
	2030	Not available	Not available	Not available		
Shutdown	Today	1-10 minutes	1 second – 5 minutes	Not available		
	2030	Not available	Not available	Not available		
Ramp-up / Ramp- down	Today	0.2 - 20 % / second	100 % / second	SOEC have a system response time of few seconds.		
	2030	Not available	Not available	Not available		
Reactive power	> Electrolysers cannot provide reactive power per se as they are a DC loads and limited reactive power is consumed by other equipment in the module. However, electrolysers may be able to provide voltage control through their converters.					

Source: ENTSO-E, Potential of P2H2 technologies to provide system services

Interim findings – Dynamic performance of electrolyzer

20%-100%, 41 sec

10%-100%, 6 sec

Interim findings – Electrolyzer project economy evaluation

Planning

Operation

Portfolio of assets

Wind farm PV farm Battery

Land
Electrolyser
H2 Storage & distribution
Water supply
Cables & pipes

Thermal storage & distribution CO2 Storage eFuel plants

Regulatory factors

Environmental & safety assessment Biodiversity ...

Social factors

Human rights & acceptance Jobs & skills

Financing

Public vs private

Revenue streams

Buy/sell electricity
Buy/sell CO2
Sell (green) H2
Sell (green) O2
Sell (green) heat
Sell (green) methanol
Sell (green) methane
Sell (green) Ammonia
Buy/sell green certificate
Buy/sell ancillary services

Operation objectives

Profit maximization
Cost minimization
CO2 minimization
100% Green Products
100% reliable energy supply
...

Sensitive factors

- Weather
- Grid-tariff, tax rate
- Incentives
- Pricing strategies for services & products
- Flexibility management?
- ...

How to develop a robus & profitable business plan (beyond LCOH) under uncertainties?

Interim findings – Electrolyzer in Faroe islands' power system

Interim findings – Electrolyzer in Faroe islands' power system

System frequency without the AEL

System frequency with 12MW AEL

Results summary and next step

Results summary

- Generated a comprehensive overview of state-of-the-art electrolyzer technology.
- Developed a relatively generic dynamic model of the electrolyzer for power system analysis.
- Integrating approx. 10MW Electrolyzer in the Faroe Islands' power system is technically feasible, which can also enhance the grid frequency stability if proper control is applied.
- Developed a framework for evaluating the economy of PtX projects.

Next step

- Maintaining awareness of technology development.
- Conducting a more detailed economic viability analysis for selected PtX developers and end-users.
- Converting conceptual studies into demo/commercial applications.

More to read

Student projects

- Arnau Ferrandis Rosello, PtX-based frequency regulation in the Faroe Island's power system, MSc thesis, Feb. 2024
- Asger Nyholm, Analysis and simulation of the integration of PtX into a future wind dominated electrical grid on the Faroe Islands, MSc thesis, Jan. 2024
- Ramon Garcia Gonzalez De Chaves, Integration of Electrolyzers in the Faroe Islands Energy System, MSc thesis, Dec.
 2023
- Sverri Jacobsen, Techno-economic assessment of the potential for electrolyzer integration in the Faroe Island energy system, BSc thesis, Dec. 2023
- Gustav von Zernichow Borgberg, Feasibility and techno-economic analysis of selected scenarios of PtX integration on Faroe Islands, BSc thesis, Dec. 2023

Relevant publications

- Petersen, M., Andreae, E., Skov, I. R., Nielsen, F. D., You, S., Cronin, A., & Mortensen, H. B. (2024). Vision of Offshore
 Energy Hub at Faroe Islands: The Market Equilibrium Impact. *International Journal of Sustainable Energy Planning and Management*, 40, 115-130.
- Andreae, E., Petersen, M., Skov, I. R., Nielsen, F. D., You, S., & Mortensen, H. B. (2024). The impact of offshore energy hub and hydrogen integration on the Faroe Island's energy system, *Energy Planning and Management* (Accepted)

