Nordic Energy Technology Perspectives
Catalysing Energy Technology Transformations

Jean-François Gagné, Head, Energy Technology Policy Division, IEA
Key points of orientation

- Global energy markets are changing rapidly
 - Renewables supplied half of global electricity demand growth in 2016, and increase in nuclear capacity reached highest level since 1993
 - Global energy intensity improved by 2.1% in 2016
 - Electric car sales were up 40% in 2016, a new record year

- The energy sector remains key to sustainable economic growth
 - 1.2B people lack access to electricity; 2.7B people lack access to clean cooking
 - Largest source of GHG emissions today, around two-thirds of global total
 - Largest source of air pollution, linked to 6.5 million premature deaths per year

- There is no single story about the future of global energy
 - Fast-paced technological progress and changing energy business models
IEA analysis shows that global CO₂ emissions remained flat in 2016 for the third year in a row, even though the global economy grew, led by emission declines in the US and China.
Global emissions stagnate, but there are regional variations

Change in annual energy-related CO₂ emissions, 2016

<table>
<thead>
<tr>
<th>GDP growth</th>
<th>Change in CO₂ emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1.6%</td>
<td>-100</td>
</tr>
<tr>
<td>+6.7%</td>
<td>100</td>
</tr>
<tr>
<td>+1.9%</td>
<td>200</td>
</tr>
<tr>
<td>+2.7%</td>
<td>300</td>
</tr>
</tbody>
</table>

United States | China | European Union | Rest of World

CO₂ emissions declined in the US & China and stalled in the EU, offsetting an increase in most of the rest of the world.
How far can technology take us?

Technology area contribution to global cumulative CO$_2$ reductions

Global CO$_2$ reductions by technology area

Pushing energy technology to achieve carbon neutrality by 2060 could meet the mid-point of the range of ambitions expressed in Paris.

© OECD/IEA 2017
In the Carbon-Neutral Scenario (CNS), Nordic CO2 emissions drop by 85% in 2050 compared with 1990 levels.
The Nordic carbon intensity of electricity supply of 59 g/kWh in 2013 was where it will be in 2045 in the global 2DS scenario.
The CNS requires a dramatic change in the composition of primary energy supply, coupled with aggressive energy efficiency policies that substantially reduce demand.
Demand sectors are the most challenging

Emissions have already been decoupled from Nordic GDP across all sectors, but this must accelerate in order to achieve the CNS, most notably in transport and industry.
Three strategic actions

1. Incentivise and plan for a more distributed, interconnected and flexible energy system

2. Tap into the positive momentum of cities in transport and buildings

3. Ramp up decarbonisation of long-distance transport and the industrial sector
Expansion of variable renewables and interconnector capacity could lead to net Nordic exports of over 50 TWh in 2050.
Investment in electricity grids needs to accelerate

Total global power generation and T&D investment in the 450 Scenario 2016-2040

- **Generation**
 - Fossil and nuclear: 4.2
 - Dispatchable renewables: 4.5
 - Variable renewables: 6.5

- **Infrastructure**
 - Transmission: 1.5
 - Distribution: 4.7
 - VRE integration: 1.0

Trillion dollars (2015)

Investments in transmission and distribution grids for integrating VRE are a small portion of the total investments in the power sector
Urban opportunities: Space heating in buildings

<table>
<thead>
<tr>
<th>Year</th>
<th>Energy Intensity</th>
<th>Annual Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>126 kWh/m²</td>
<td>0.8%</td>
</tr>
<tr>
<td>2050</td>
<td>60 kWh/m²</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Nordic building energy demand is reduced by 27% under the CNS, compared with 2013, and average space heating energy intensities are improved by 55%.
Enhanced buildings efficiency could also improve system flexibility

Energy use in the buildings sector under different scenarios

- 2014 (123 EJ)
- RTS 2060 (157 EJ)
- B2DS 2060 (112 EJ)

Efficiency technologies can provide the same level of comfort while reducing energy demand despite doubling floor area.
Urban opportunities: Rapid electrification of transport

The CNS requires an almost complete phase-out of fossil-fuelled cars and a rapid roll-out of EVs, especially in urban areas.
Long-distance transport has less options

15% import dependency for biomass in 2050, up from 8% in 2013

Biofuels comprise nearly two-thirds of total final energy use in transport in 2050, and will need well-functioning international markets, sustainable production and distribution, and politically acceptable trade partners.
Can we change the landscape of transport?

Vehicle sales and technology shares under different scenarios

<table>
<thead>
<tr>
<th>Light-duty Vehicles (millions)</th>
<th>Heavy-Duty Vehicles (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>2015</td>
</tr>
<tr>
<td>Gasoline ICE</td>
<td>Gasoline ICE</td>
</tr>
<tr>
<td>Diesel ICE</td>
<td>Diesel ICE</td>
</tr>
<tr>
<td>CNG/LPG</td>
<td>CNG/LPG</td>
</tr>
<tr>
<td>Hybrids</td>
<td>Hybrids</td>
</tr>
<tr>
<td>Electric & FCV</td>
<td>Electric & FCV</td>
</tr>
</tbody>
</table>

The transportation sector already experiences technological change, but won’t shed its oil dependency without assertive policies.
An achievable, yet ambitious, vision for the future of trucks

Fuel demand saving in the Modern Truck Scenario relative to the Reference Scenario, 2050

13.5 mb/d

- Fuel switching 24%
- Improved logistics 42%
- Improved efficiency 34%

Modernising trucks and systems operations could reduce global truck fuel demand by 50% in 2050 and emissions by up to 75%, with benefits for energy security and environmental goals
Around 145 EJ of sustainable bioenergy is available by 2060 in IEA decarbonisation scenarios, but gets used differently between the 2DS and the B2DS.
CCS will be critical in industry

The lingering challenge of process-related emissions in industry necessitates broad deployment of innovative low-carbon processes, and notably CCS, in the CNS.

Nordic industrial emissions in 2050

Total
20 Mt CO$_2$

Captured
7 Mt CO$_2$
A challenging task ahead for CCS

CCS is happening today, but needs to be ramped up hundreds of times to achieve long-term goals. The role for CCS varies based on local circumstances.
The potential of clean energy technology remains under-utilised

<table>
<thead>
<tr>
<th>Solar PV and onshore wind</th>
<th>Energy storage</th>
<th>Electric vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>Transport – Fuel economy of light-duty vehicles</td>
<td>Energy-intensive industrial processes</td>
</tr>
<tr>
<td></td>
<td>Energy-intensive industrial processes</td>
<td>Lighting, appliances and building equipment</td>
</tr>
<tr>
<td></td>
<td>More efficient coal-fired power</td>
<td>Carbon capture and storage</td>
</tr>
<tr>
<td></td>
<td>Carbon capture and storage</td>
<td>Building construction</td>
</tr>
<tr>
<td></td>
<td>Building construction</td>
<td>Transport biofuels</td>
</tr>
</tbody>
</table>

- Not on track
- Accelerated improvement needed
- On track

Recent progress in some clean energy areas is promising, but many technologies still need a strong push to achieve their full potential and deliver a sustainable energy future
We need to move away from a one-directional energy delivery philosophy to a digitally-enhanced, multidirectional and integrated system that requires long-term planning for services delivery.
Collaboration is key to accelerating innovation

- Close to 6,000 experts
- 39 TCPs
- More than 1,900 topics to date
- 52 countries
- About 300 public or private entities
- 4 regional or international organisations

This map is without prejudice to the status of sovereignty over any territory, to the delimitation of international frontiers and boundaries, and to the name of any territory, city or area. Experts from countries shown above participate in activities of the Technology Collaboration Programmes.
Global clean energy RD&D spending needs a strong boost

Global clean energy RD&D spending in efficiency, renewables, nuclear and CCS plateaued at $26 billion annually, coming mostly from governments. Mission Innovation could provide a much needed boost.
Conclusions

- Early signs point to changes in energy trajectories, helped by policies and technologies, but progress is too slow.
- An integrated systems approach considering all technology options must be implemented now to accelerate progress.
- Innovation can deliver, but policies must consider the full technology cycle, and collaborative approaches can help.
- Achieving global carbon neutrality by 2060 would require unprecedented technology policies and investments.
- Together, the Nordic countries can send a strong signal to the global community on the value of coordinated ambitious goals.
Explore the data behind ETP

www.iea.org/etp

Nordic Energy Research
Nordic Council of Ministers

www.iea.org/etp/nordic
www.nordicetp.org

www.iea.org

IEA

www.iea.org/statistics