

Transitioning remote arctic settlements to renewable energy systems

- a modelling study of Longyearbyen, Svalbard

Hans-Kristian Ringkjøb

PhD candidate, Renewable Energy Geophysical Institute, University of Bergen

UNIVERSITY OF BERGEN

ABOUT US SUPPORT US

РУССКИЙ

Menu

The port facilities for coal shipments in Van Mijenfjord. Photo: Thomas Nilsen

End comes to 100 years of Norwegian coal mining at Svalbard

Longyearbyen

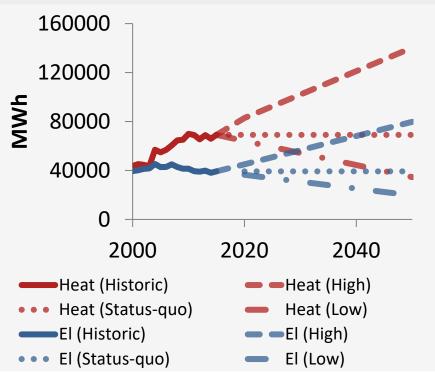
- Norway's only coal-fired power plant
- Ageing infrastructure
 - Recent upgrades extended lifetime for another 20 years
- 70 GWh district heat and 40 GWh electricity per year
- About 60 000 ton CO₂ emitted per year
- Coal supply for ten more years

Longyearbyen needs a new energy supply!

How can we transition the energy system in Longyearbyen to one based on renewable energy sources?

Modelling Approach

- Long-term energy model
 - TIMES-Longyearbyen
- Horizon: 2050
- Techno-economic linear optimisation tool
- Provides energy services at the lowest cost possible
 - Models investments in infrastructure, operation of the system and imports of energy carriers
- Stochastic model version
 - Takes into account the uncertainty of wind and solar availability
 - 60 operational scenarios modelled


- Longyearbyen (78.2° N)
- Largest settlement on Svalbard
- About 2100 year-round

residents

Demand Projections

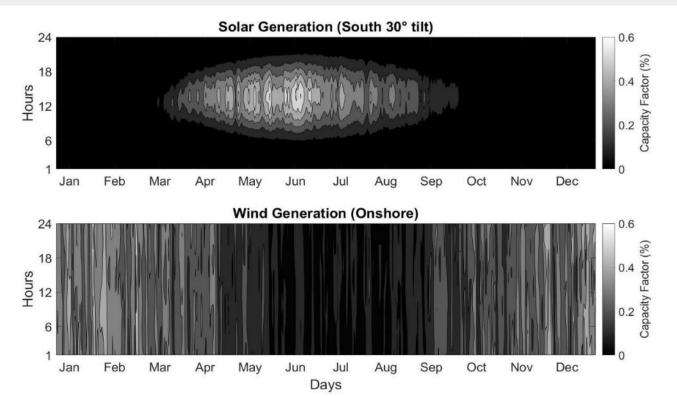
- Model results are largely driven by the demand of energy services
- Three demand projections:
 - Low (Energy efficiency measures, lower population, reduced tourism etc.)
 - **Status-quo** (Same situation as today)
 - High (Doubled population, increased tourism etc.)

UNIVERSITY OF BERGEN

Model cases

 Isolated system with local renewable energy production HYD

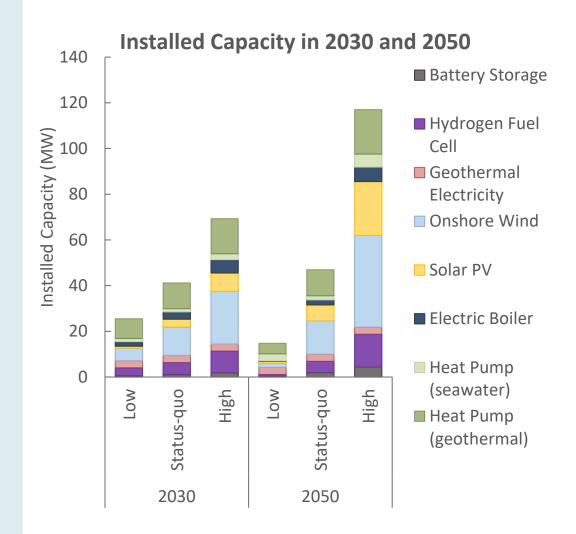
 Imports of hydrogen from mainland Norway


FOS

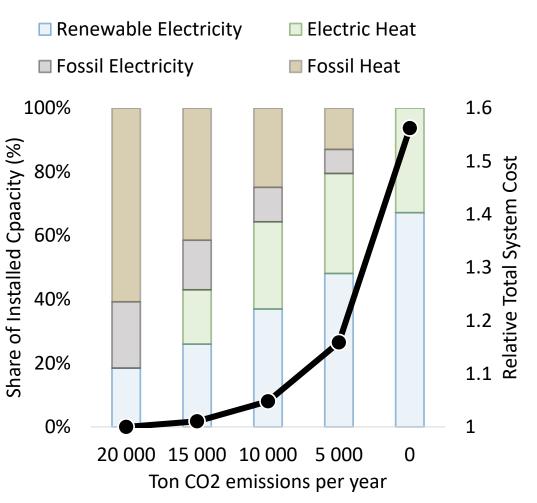
 No constraints, i.e. imports of both fossil fuels and hydrogen permitted

Solar and wind resources

An isolated system


- High investments in infrastructure needed
- Full hydrogen value chain
- Large amounts of energy storage

Installed Capacity in 2030 and 2050


Hydrogen import

- Importing H₂ drastically reduces investments
- Reduces total costs by a factor 2 to 3
- 35 NOK per kg H₂

Import of fossil fuels

- Natural gas is preferred
- Reduces emissions by about a third
- System cost increases exponentially as emissions are further reduced

Overall results

- All model cases lead to feasible solutions
- Allowing for minor emissions could be an effective way to reduce costs and increase system reliability
 - Reducing emissions to 5000 ton CO₂ per year could give a Cost of Energy of 1.76 NOK/kWh for the Status-quo demand projection

Model Cases	Total System Cost (bNOK)			Cost of Energy (NOK/kWh)		
	Low	Status-quo	High	Low	Status-quo	High
ISO	3.63	6.17	11.32	5.15	6.33	8.54
HYD	1.67	2.36	3.52	2.37	2.42	2.66
FOS	1.31	1.51	1.97	1.86	1.55	1.49

Comparison with EVA

- The results are in good agreement with the recommendations from EVA
- Solar and wind shows potential
- Smart energy use and energy efficiency
- Electrification of heating is required

Summary

• A renewable-based energy system is feasible for Longyearbyen

• Importing hydrogen is cheaper than an isolated system

 Fossil fuel reserve generators can be a good option to bring down costs with limited emissions

Transferable Outcomes

- The potential of solar energy use in the Arctic is underrated
- The combination of various resources and technologies is key
- In systems based on variable renewables, a small fossil fuel reserve is likely to reduce costs while only leading to limited emissions
- Renewable Arctic energy systems are possible today!

UNIVERSITY OF BERGEN

