

Sustainable Aviation Fuels - SAF An introduction

Hariklia Gavala

Associate Professor

AT-CERE

Applied Thermodynamics - Center for Energy Resources Engineering

DTU Chemical Engineering

Department of Chemical and Biochemical Engineering

SAF – Definition and criteria

- > Renewable Energy Directive
 - ✓ Land-use criteria
 - ✓ Direct GHG emissions emission reduction criterion
- ➤ Carbon from biomass and/or CO₂
 - ✓ Material of biological origin excluding material embedded in geological formations and transformed to fossil (Food and Agricultural Organisation of the United Nations)
 - ✓ Potentially other wastes (plastic, tyres etc.)
- \triangleright Energy and reducing power for transformations (i.e. H_2) from renewable sources (i.e. solar, wind, geothermal, hydro, sea)

SAF – Definition and criteria

- ➤ Production pathways with biomass and/or CO₂ as main feedstock that:
 - ✓ Are technologically feasible
 - ✓ Are economically sound
 - ✓ Fulfill the sustainability criteria as defined by the Renewable Energy directive
- ➤ AND Approved by ASTM, American Society for Testing and Materials or other global standards bodies (DEF-STAN)

SAF – ASTM approved production pathways International Civil Aviation Organisation (ICAO 2017)

Conversion Process	Abbreviation	Possible Feedstock	Blending ratio by Volume
Fischer-Tropsch hydroprocessed Synthesized Paraffinic Kerosene	FT-SPK	Biomass	50%
Hydroprocessed Esters and Fatty Acids for Synthesized Paraffinic Kerosene	HEFA-SPK	Renewable oils (e.g. vegetable oils and fats, animal fat, recycled oils etc.) and Biomass	50%
Hydroprocessed Fermented Sugars to Synthesized Iso- Paraffins	HFS-SIP (or DSHC)	Biomass rich in sugars	10%
Alcohol-to-jet Synthesized Paraffinic Kerosene	ATJ-SPK	Biomass	30%
Synthesized kerosene with aromatics derived by alkylation of light aromatics from non-petroleum sources	FT-SPK/A	Biomass	50%

DTU

SAF – ASTM approved production pathways

International Civil Aviation Organisation (ICAO 2017)

Fischer-Tr hydroprod Synthesiz Kerosene		FT-SPK (also FT-SPK/A)	Biomass	50%		
			Intermediate feedstock also for ATJ & HEFA			
Algae — Ligno-cellulose — Dre-treatment	Fast Pyrolysis — Liquefaction	Gasification & Reformi		scher-Tropsch Fractionation	HDCJ*	SAF

^{*} Hydrotreated Depolymerized Cellulosic to Jet - not approved yet

SAF – ASTM approved production pathways

International Civil Aviation Organisation (ICAO 2017)

SAF – ASTM approved production pathways

International Civil Aviation Organisation (ICAO 2017)

Technological solutions are here but...?

Technological solutions are here but...?

Jong et al., 2015 Biofpr, 9:778-800 RENJET under EIT Climate-KIC

MFSP, € L ⁻¹	Jong et al., 2015	Wormslev et al., 2016
HEFA	1,4	0,8 - 1,5
FT	1,6 - 2,5	2,2
ATJ	2,3 - 3,4	1,7 - 2,0
DSHC ()	4,5 - 6,1	-

Wormslev et al., 2016 Sustainable jet fuel for aviation ISBN 978-92-893-4661-0

Targets from a technological point of view

- ➤ Share experiences from high TRL applications how we can expand and increase production and what the challenges are
- Suggest technological solutions for cost-reduction
 - ✓ Short term: ASTM approved & higher TRL
 - ✓ Long term: not ASTM approved & lower TRL

Welcome and
looking forward to
presentations & discussions