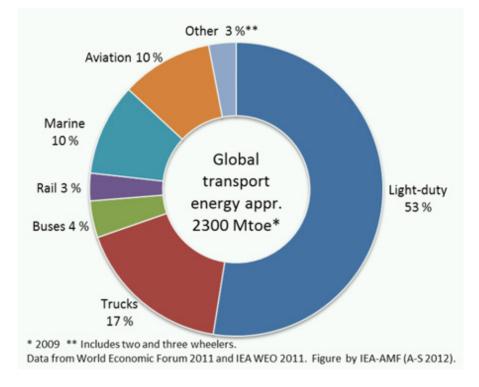
Recent trends in E-fuels / Power2X

Peter Holtappels Professor, Head of section Section for Electrochemical Materials

Peho@dtu.dk

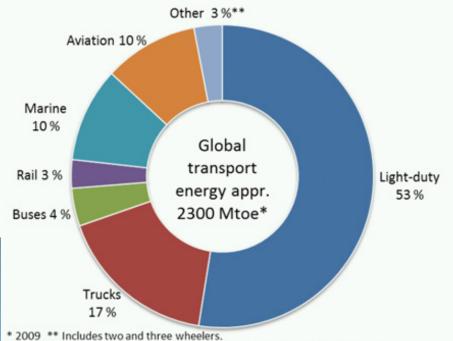
Sustainable Aviation Fuel - Workshop 2018, Copenhagen


DTU Energy Department of Energy Conversion and Storage

Outline

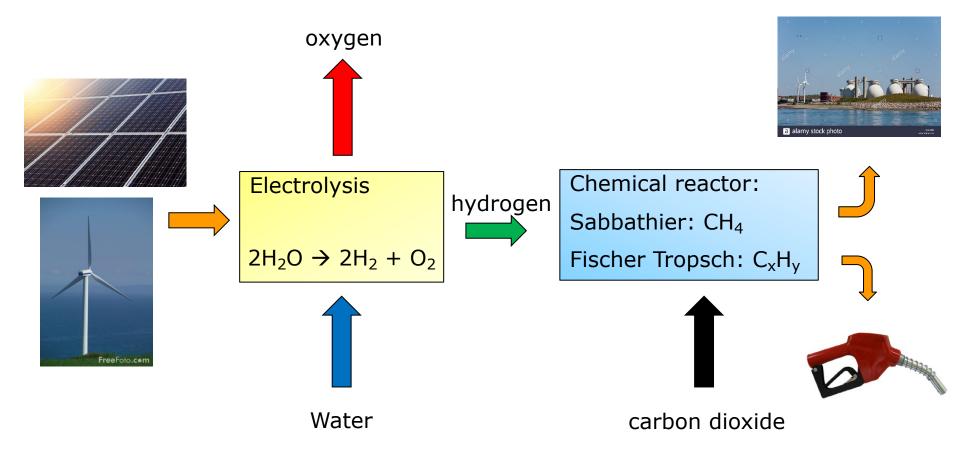
- Electrofuels
 - What are they
 - What activities are ongoing?
- Carbon dioxide sources

• The road ahead for E-fuels?



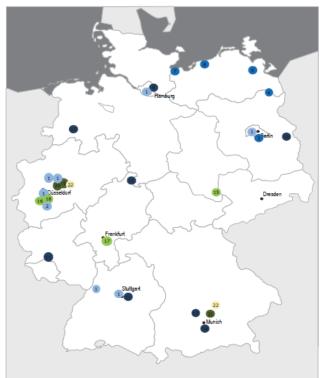
Decarbonization of the aviation sector

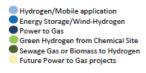
- Is a goal in RED II
 - Sustainable transport fuels
- A small share of the energy system
- Conclusions from report
 - engine technology: marginal
 - Bio based fuels: only partly
 - Electro fuels:
 - possible
 - CO₂ cycle



Data from World Economic Forum 2011 and IEA WEO 2011. Figure by IEA-AMF (A-S 2012).

Principle Power to X


Power-to-gas activities around DK


- Germany: already in the commercials in TV
 - Hydrogen
 - Falkenhagen (2MW)
 - Eon Hamburg
 - Thüga Munich
 - Methane
 - Fraunhofer Stuttgart (250 kW)
 - Fraunhofer Werlte (6,3 MW ??)
 - Erdgas Schwaben
 - Audi (e-gas) 6 MW (3 MW CH4)
 - Falkenhagen (2017 0.6 MW (CH4)
- NL
 - NaturalHy: H2 feed

Green Hydrogen & Power to Gas

Demonstrational Projects in Germany

February 2012

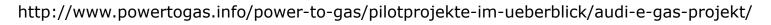
For Further Information: Germany Trade and Invest GmbH

Germany Indue and Invest diffe Friedrichstraße 60 10117 Berlin Germany T.+49 30 200 099-555 F ±49 30 200 099-555

energystorage@gtai.com

GERMANY

Falkenhagen

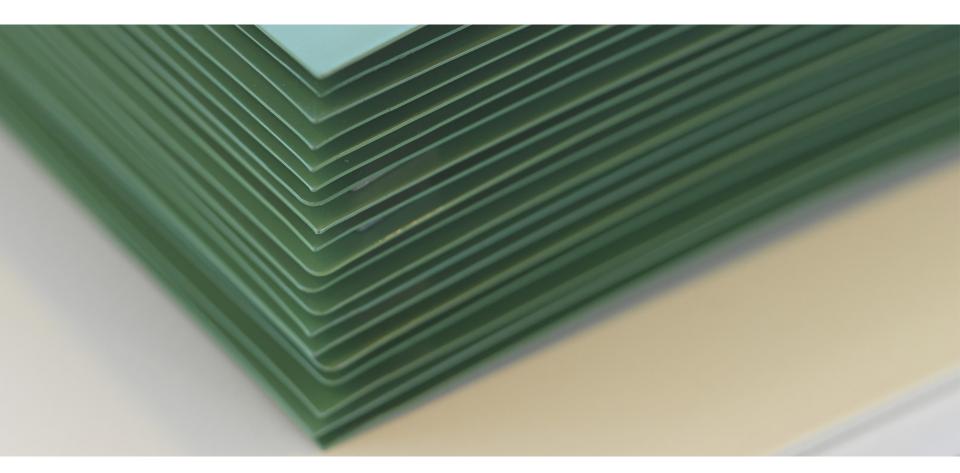

- Operator Uniper (Eon)
- 2 MW Hydrogen
- 2017 Methanation unit
 57 Nm³/h SNG
 - Ca 600 kWh
- Heat utilization
 in local industry

https://www.euwid-energie.de/uniper-erweitert-power-to-gas-anlage-in-falkenhagen-ummethanisierungseinheit/

Audi E-gas

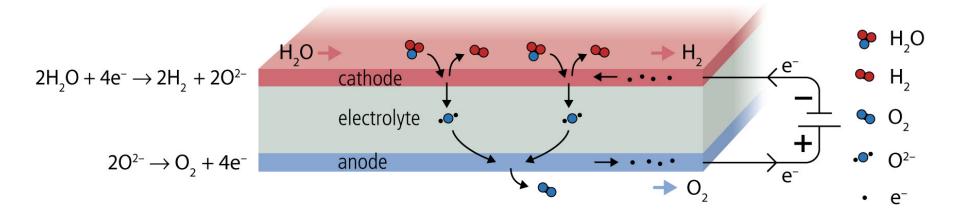
- Location
 - Werlte, Niedersachsen
- Inauguration
 - 25.06.2013
- Electrical power input
 - 6.000 kWe
- H₂-Production
 - 1.300 m³/h
- SNG-Production
 - 300 m³/h.
- CO₂-Source
 - Biogasplant EWE AG
- Heat utiliztaion
 - In biogas plant for hydrogenation and balance of plant

Efficiency ca 50% power to methane


Audi e-gas-Anlage Elektrolyse Drei mit regenerativem Strom betriebene Elektrolyseure spalten Wasser in Sauerstoff und Wasserstoff Methanisierungsanlage Stromversorgung In der Methanisierungsanlage reagiert der Ausgangsprodukt für das Audi e-gas Wasserstoff mit Kohlendioxid. Ergebnis ist ist regenerativ erzeugter Strom synthetisches Methan - das Audi e-gas Gaseinspeisung Von hier aus gelangt das e-gas über das öffentliche Gasnetz an **CNG-Tankstellen** F Besucherzentrum Aufenthaltsmöglichkeit für Gäste Aminwäsche / Aufbereitung des Kohlendioxids als Rohstoff für die e-gas-Anlage

Power-2-Gas activities in Denmark

- Power-to-Gas via Biological Catalysis (P2G-BioCat) 1 MW 27.6 MDKK, ForskEL
 - Electrochaea, Low temperature elelctrolysis
 - <u>http://www.electrochaea.com/technology/</u>:
- Foulum DK: precommercial project
 - http://www.electrochaea.com/technology/
- EL upgraded biogas
 - Haldor Topsøe, EUDP
 - 10 Nm³ Hydrogen, 40 kW High Temperature, Solid Oxide Electrolysis
- CO₂ electrofuel project
 - Nordic Energy Research
- Synfuel
 - DTU Energy, Innovationsfonden (DSF) 2015-2019
 - Gasification of Biomass and electrolysis
 - reuse of oxygen in gasification
- Wind2H: coupling windpower and hydrogen production
 - DTU Energy, Innovationsfonden
- Cryogenic Carbon Capture and Use C3U
 - Aalborg University, EUDP 2017-2019



DTU Energy: Solid Oxide Electrolysis Cells

Solid Oxide Electrolysis Cells (SOEC)

- Very similar to the corresponding fuel cells (SOFC)
- High operation temperature (approx. 800 °C), very high efficiency
- Conversion of electricity to chemical energy, either by electrolysis of water or \mbox{CO}_2
 - High efficiency >80%
 - Syngas as feedstock for synthetic fuels

Conclusion on SOEC technology

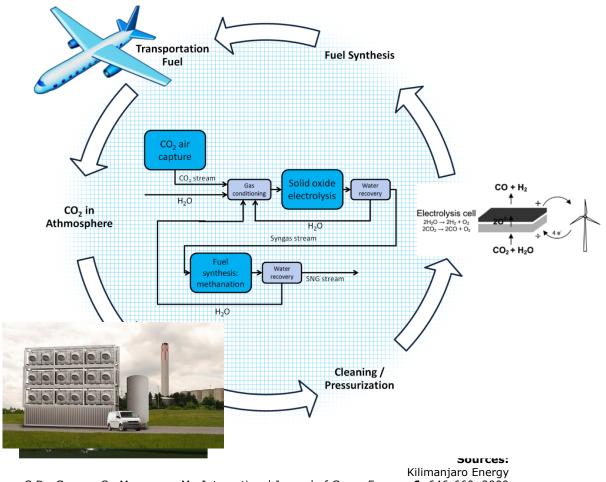
- European and worldwide development
 - DTU, DLR, Jülich, CEA, ENEA,
 - Haldor Topsoe, DK, Sunfire, DE, SolidPower, IT,
- Based on solid oxide fuel cell technology
 - Ni- based fuel electrodes
 - Co-electrolysis: syngas composition is defined by reversed WGS equilibrium
 - Other design and materials are possible
- Thermal integration into downstream processes possible
- General conclusions on Electrolysis
 - Highly efficient
 - Area based \rightarrow material extensive
 - Scaling problem: several 10th of kW units \rightarrow large scale chemical plants
- 12 DTU Energy, Technical University of Denmark

CAPFUEL project

- Søren Lyng Ebbehøj & Mogens B Mogens
- Modelling based analysis:
 - CO₂ air capture
 - Solid oxide electrolysis
 - Fuel synthesis: methanation
- System and heat integration
 - Plant layout
 - Mass balance
 - Heat integration
 - Energy balance

of Energy Conversion and Storag

PhD Thesis April 2015

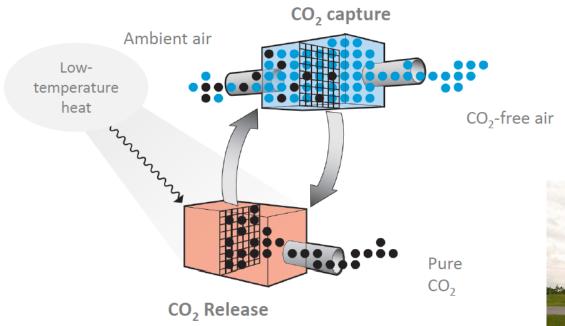

ITU Energy

CAPFUEL

Department of Energy Conversion and Storage

ISBN 978-87-92986-32-0

Closing the carbon cycle?



Ebbesen, S.D., Graves, C., Mogensen, M., International Journal of Green Energy, **6**, 646-660, 2009 Graves, C., Ebbesen, S., Mogensen, M., Lackner, K.S., Renewable and Sustainable Energy Reviews 15 (2011) 1–23 **DTU Energy, Technical University of Denmark**

May 2018

Air Capture via Pressure Swing

/ CLIMEWORK

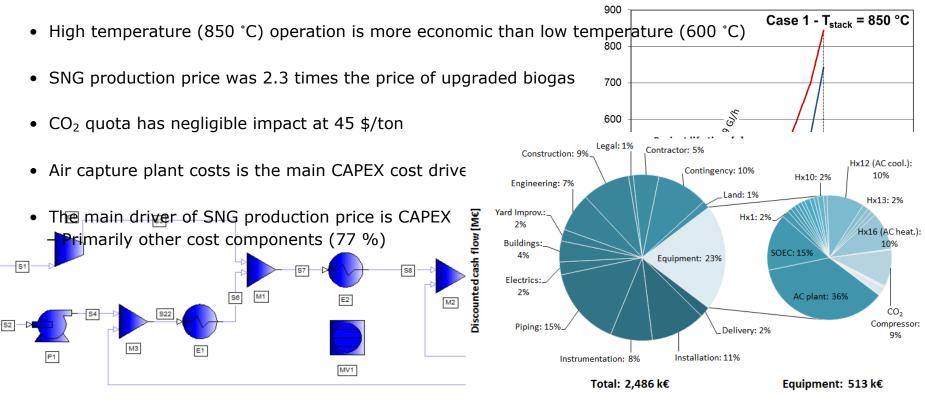
- Batch processes
 - Chemisorbtion of CO_2 unto sorbent, amine based solid
 - Regeneration of sorbent and release of CO₂ by energy input
 - Vaccum-temperature swing process
 - T can be kept below 100 C
- Estimated CO₂ price: ~100 €/ton (electricity @ 18.6 €/GJ)
- "Second of a kind" (no mass production or learning)

DTU Energy, Technical University of Denmark
 May
 2018

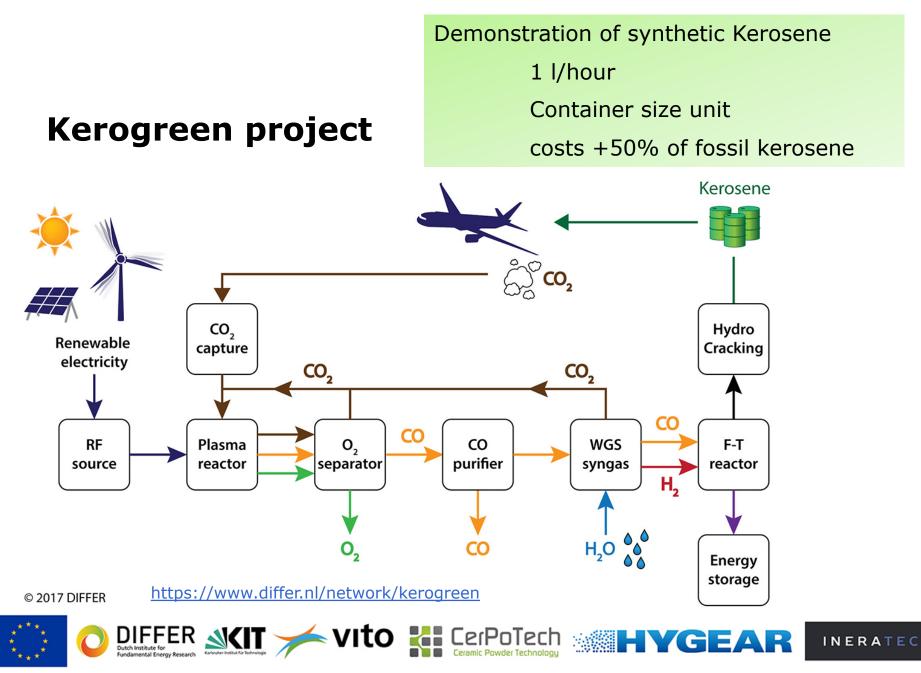
www.climeworks.ch

Source: www.Climeworks.com

Peter Holtappels


15

Peter Holtappels 30/05/2016


Conclusion

Lessons learned from this study:

- A technological, steady state, thermodynamic SOEC model was developed and operating parameters mapped
- The SOEC and methanation sub-systems integrated well in terms of heat balance but insufficient waste heat is present in the plant to cover the air capture sub-system

17/04/2015

17 **DTU Energy, Technical University of Denmark**

22 May 2018

From Kerogreen project

- Challenges in decarbonizing the aviation sector
 - Low energy density of batteries, hydrogen, hybrids of the two
 - Biofuels: food vs fuel vs flora trilemma
 - Circular economy: closed Carbon cycle, using CO2 from air to and renwable electricity
- Advantage of green kerosene
 - Existing infrastructure can be kept
 - Storage , transport, filling and jet engine technology
 - Synthetic kerosene emits no sulphur and less soot
 - NOx (lean combustion)
- Aim of Kerogreen: demo with 1 l/ hour: plant size is 10-20 kW?? Container size unit, costs +50% of fossil kerosene,
- Facilitators:
 - ETS, airline CO2 compensation fund, ICAO regulation, CO as
- 18 DTU Syrgen Technical University of Denmark

Peter Holtappels

22 May 2018

Electrical operative Plasma and MIEC membrane

The road ahead for E-fuels?

- Several pathways exist already today:
 - Power to Hydrogen to X
 - Power to syn-gas to X
 - Power to carbon monoxide to syngas to X

- For classical reactor technology a scaling problem has to be overcome:
 - Several 10th of kW EC reactors vs MW chemical plants
- Microreactor technology can decentralize the down stream processes
- Several research attempts to improve
 - Electrolysis efficieny and Costs:
 - Direct air capture technology
 - Reactor technology
- Shift of paradigm
 - From central production of fuels to loc_____

