Renewable hydrogen for Denmark
In this presentation...

1. Why renewable hydrogen
 - Denmark’s 70% decarbonisation target for 2030 brings challenges that can best be addressed with renewable hydrogen

2. Need for electrolysis in the energy system
 - Future energy demand
 - ‘Direct electrification first’

3. Status of electrolysis
 - Technology development: scale and efficiency
 - Stimulating consumption and removing regulatory barriers
Why renewable hydrogen? Denmark’s 70% decarbonisation target

- Current policies and trends are not sufficient to reach the 70% target
- Current policies and trends are not expected to lead to any improvement in the heavy transport sector
- Direct electrification, where possible, is most often the most efficient solution; in harder-to-abate sectors, however, indirect electrification will be needed
 - In those sectors, renewable hydrogen and its derivatives are the most cost-efficient solution for at least 9 MtCO₂e by 2030\(^1\), with additional potential applications towards 2050
 - This would all be new hydrogen consumption, as today Denmark’s hydrogen demand is remarkably low

Emissions in Denmark\(^2\), MtCO₂e

<table>
<thead>
<tr>
<th>Year</th>
<th>Energy</th>
<th>Transport other</th>
<th>Railways</th>
<th>Cars and motorcycles</th>
<th>Vans, buses, and trucks</th>
<th>Industry</th>
<th>Energy</th>
<th>Transport other</th>
<th>Railways</th>
<th>Cars and motorcycles</th>
<th>Vans, buses, and trucks</th>
<th>Agriculture</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>26</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- **Min. hydrogen potential**: ~50% (of 17 MtCO₂e gap)
 - Fuels in manufacturing ~3
 - Heavy transport ~6

1. Assuming that light transport will be addressed through direct electrification, rather than hydrogen (although hydrogen could technically also tackle those emissions); additional potential in industry possible but not calculated, i.e. regard the 8 MtCO₂e as a conservative estimate.
2. Source: Energistyrelsen’s [Basisfremskrivning 2019](https://www.energi.dk) and transport modes breakdown from [EEA](https://www.eea.europa.eu)

Emissions in Denmark

- 2030: 70% target

Reasons for Renewable Hydrogen

- **Energy**
- **Transport other**
- **Railways**
- **Vans, buses, and trucks**
- **Industry**
- **Cars and motorcycles**
- **Energy**
- **Transport other**
- **Railways**
- **Vans, buses, and trucks**
- **Industry**
- **Cars and motorcycles**
- **Energy**
- **Transport other**
- **Railways**
- **Vans, buses, and trucks**
- **Industry**
- **Cars and motorcycles**

Source: Ørsted-DTU on H2 18/09/2019

Note:

- Ørsted-DTU on H2 18/09/2019
- Source: Energistyrelsen’s [Basisfremskrivning 2019](https://www.energi.dk) and transport modes breakdown from [EEA](https://www.eea.europa.eu)
Why renewable hydrogen? Denmark’s potential in an international context

- Towards 2030, renewable hydrogen can address a minimum of 9 MtCO$_2$e emissions from heavy transport and manufacturing in Denmark.

- Additionally, it can address almost 5 MtCO$_2$e of “exported” emissions from fuelling in Denmark of international aviation and navigation.

- This still leaves a significant share of Denmark’s offshore wind potential “free” for renewable direct electrification nationally and electricity exports to Europe.

Assumptions:

- MtCO$_2$e to MtH$_2$e: transport factor = 5.55; industry factor = 10.64 (MtH$_2$e to illustrate hydrogen equivalent; some of it would be on the basis of recycled carbon use)
- Electrolyser efficiency = 65%
- Direct electricity use figure is a proxy from Energinet’s “Systemperspektiv 2035”

Emission addressable with renewable hydrogen 2030:
- 14.2 MtCO$_2$e
- 1.5 MtCO$_2$e
- 5.4 MtCO$_2$e
- 3.0 MtCO$_2$e

Renewable hydrogen demand 2030:
- 2.3 MtH$_2$e
- 0.3 MtH$_2$e
- 1.0 MtH$_2$e

DK offshore wind potential:
- >175 TWh$_{el}$

Emission addressable with renewable hydrogen 2030:

- Transport (Int’l)
 - 158 TWh$_{el}$
- Transport (national)
 - 50 TWh$_{el}$
- Manufacture
 - 43 TWh$_{el}$
- Direct electricity use (electrification)
 - 15 TWh$_{el}$
- Direct electricity use (existing)
 - 18 TWh$_{el}$
- Electricity demand 2030
 - 32 TWh$_{el}$

DK offshore wind potential:
- >175 TWh$_{el}$
Need for PtX in the European energy system: ‘direct electrification first’

- EU Roadmap estimates 150% increase in electricity consumption
- Electricity transmission must expand to handle 150% more electricity, including offshore grid for 450 GW offshore wind
- Rethinking needed to reduce additional need for electricity transmission to less than 150% and to bring down cost:
 - Optimise location and flexibility of new power use
 - Optimise use of different infrastructure modes (gas vs electricity)
 - Optimise offshore grid planning with hybrids that combines offshore wind and interconnectors

Source: 1.5Tech scenario from European Commission and own calculations. Own calculation used to convert Mtoe e-liquids, e-gas and hydrogen into electricity consumption, assuming electrolyser with 70% efficiency and 3% losses converting hydrogen to e-gas and e-liquids.
Cost-efficient path: electrification and the case for renewable hydrogen

The preferred solution where possible:
- Light transport, some heavy duty transport, heating (buildings), industrial heat, etc.

The solution to replace current fossil hydrogen use and decarbonize some transport applications:
- Process industry (fertilizers, chemicals, refining)
- Heavy transport (busses, local trains, trucks, …)

The solution where direct electrification and green hydrogen is difficult:
- E-kerosene for aviation from renewable hydrogen, biogas/biomethane and hydrogen from natural gas with CCS
- Green bunker for shipping (ammonia, methanol etc. from renewable hydrogen)
- Flexible electricity generation, last-mile industrial heat applications, etc.

Renewable H₂ cost development (DKK/kg)

- Renewable H₂ 2019: 38.0-40.2
- Grid tariffs & levies: 6.8-9.0
- Technology development: 9.2
- Continuation of ETS free allowances: 1.5
- Renewable H₂ 2030: 20.5

Approx. on par with fossil H₂, but this might not be the relevant comparator in a Danish context.

Regulatory challenges impact cost just as much as technology maturity.
Status of electrolysis: technology cost reductions

Electrolyser cost (total), €/kW

- Small electrolyser (10MW)
- Large electrolyser (100MW)

Technology cost reduction levers

- Scaling-up: Significant cost reduction from small size to large scale electrolyzers
- Maturation: Further cost reduction achievable through technology development, reachable by developing close collaboration with suppliers and customers

Capex and innovation grants can help bridging the CAPEX gap until technology has reached its full maturity

Efficiency

Costs can be further reduced by efficiency gains of approx. 5% expected between now and 2025

65% in 2018, 70% in 2025

Note: Polymer electrolyte membrane electrolysis technology assumed

Ørsted-DTU on H2 18/09/2019
Status of electrolysis: support for deployment and regulatory challenges

1. Support mechanisms should focus on consumption (rather than production) to close the cost gap and ensure offtake
 - Minimal fossil hydrogen production in Denmark today, so it is not about substitution but about new demand

2. Resolve regulatory challenges
 - Cost-reflective tariff structure that creates incentives to locate near renewable electricity generation, to optimise use of offshore wind potential and ensure electrolysers connect to the grid
 - REDII implementation at both national and EU level (delegated acts)
 - Continuation of free EU-ETS allowances, and clarify treatment of recycled carbon (CCU; currently double-counted) under ETS Directive

Source: OK, SKAT, CHIC project, NEL, Morningstar, IBST, IATA, Ørsted analysis

1. Energy tax and CO₂ tax
2. 2MW alkaline electrolyser with 75% HHV efficiency co-located with offshore wind turbines in DK in the year 2019. Capex of EUR 2.3m, expected lifetime of 12 years. And H₂ price of 5.3 EUR/kg in 2019 (expected to decrease to 3 EUR/kg in 2030).
3. Cost of CO₂, kerosene synthesis and conditioning, transport to airport and H₂ storage cost based on IBST Power-to-liquids report from 2016 with projection for 2050. For the purpose of this analysis it is assumed the price of this will remain relatively unchanged from today. 5. Price average for Europe & CIS

DKK/100km, excl. VAT (2019, indicative)

- Diesel tax
- Diesel price
- Dispensing
- Distribution
- H₂ electrolysis cost

DKK/tonne, excl. VAT (2019, indicative)

- CO₂ synthesis and conditioning, transport to airport and H₂ storage cost
- H₂ electrolysis cost
- Kerosene price

Ørsted-DTU on H₂ 18/09/2019