MAN Energy SolutionsFuture in the making

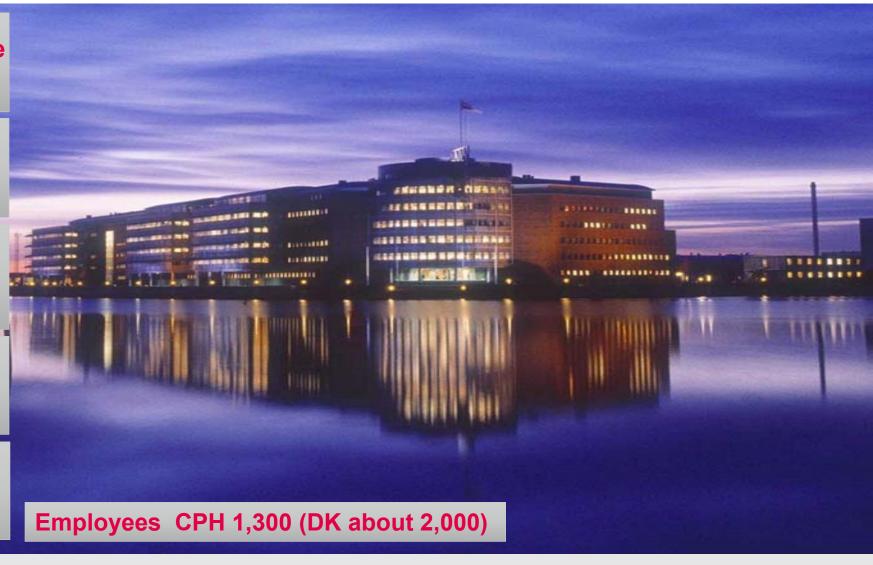
Prospects for energy and maritime transport in the Nordic Region

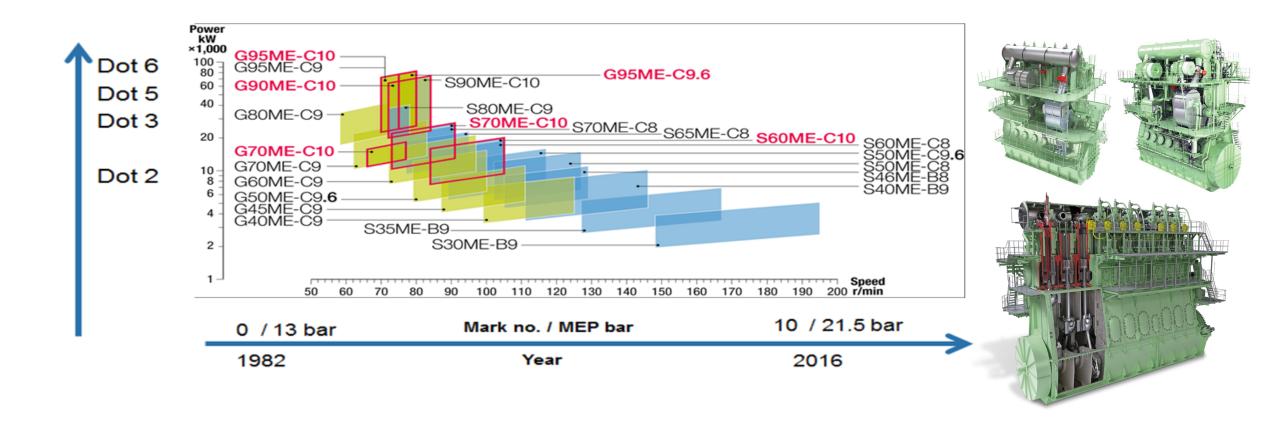
The world's leading designer of Two Stroke Diesel Engines

Copenhagen, Denmark.

Design of Two-Stroke Engines

Production of Spare Parts

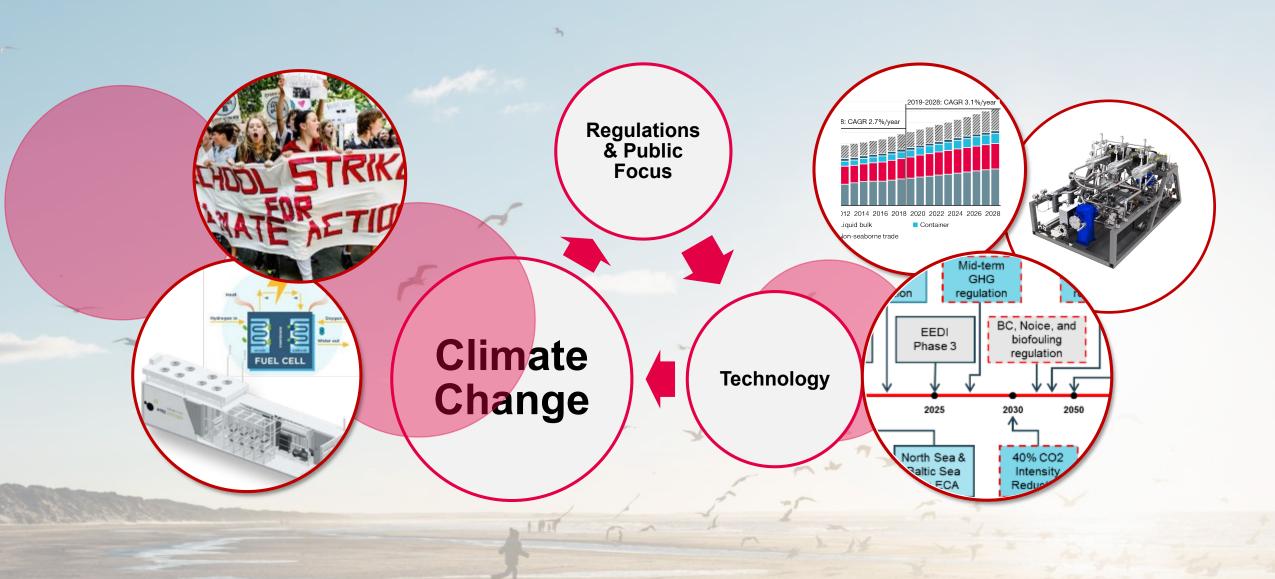

PrimeServ Academy


R&D Center

Diesel House

Engine Programme Development

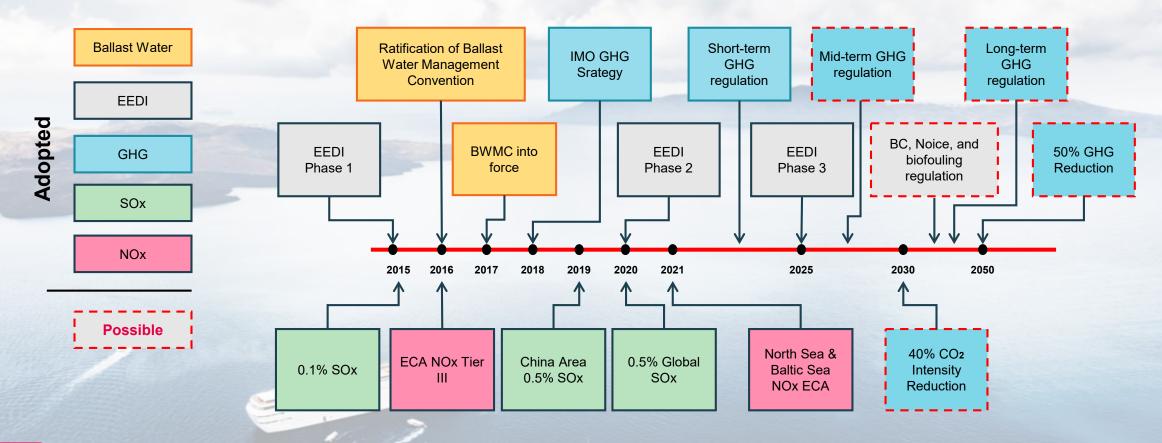
Mission: Meet any combination of propeller power and speed the naval architects will need


MAN Energy Solutions

- 1 Company Strategy, Targets, Market drivers
- 2 Marine Application & Decarbonization Options
- 3 Power to X
- 4 Energy Outlook

Driver of MAN-ES company strategy

Market Drivers



Regulation – a driving factor for engine development

Emission Regulations

Timeline overview

- NOx, SOx & EEDI regulation on the short term focus list
- Significant GHG reductions planned in the following years

IMO resolution MEPC.304(72)

Initial IMO strategy on reduction of GHG emissions from ships

Level of ambition

Carbon intensity of ships to decline

Strengthening of EEDI requirements for new ships

Carbon intensity of shipping to decline

- 40% reduction per transport work by 2030 relative to 2008
- 70% reduction per transport work by 2050 relative to 2008

GHG emission from shipping to decline

- 50% reduction of GHG emissions by 2050 relative to 2008

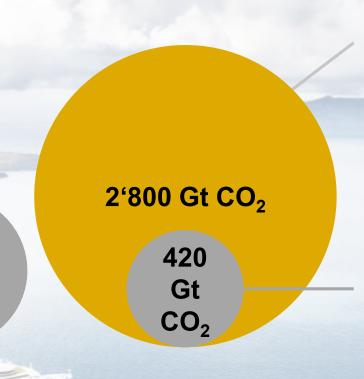
Timeline

Short-term measures: 2018-2023

- EEDI improvement (Energy Efficieny Design Index)
- SEEMP improvement (Ship Energy Efficiency Management Plan)
- Speed regulation
- Methane slip regulation
- VOC regulation (Volatile Organic Compounds)

Mid-term measures: 2023-2030

- Low-carbon/zero carbon fuels introduction
- Operational energy efficiency requirements
- Market-based measures


Long-term measures: > 2050

Zero carbon/fossil-free fuels for 2050 and later

The Target: max. 2°C

CO₂ Emissions & Fossil Fuel Reserves

CO₂ emissions caused by fossil fuels 1990 - 2015

CO₂ emission potential of proven global fossil fuel reserves

Maximum amount of fossile fuel emissions until 2050 before reaching 2°C carbon budget

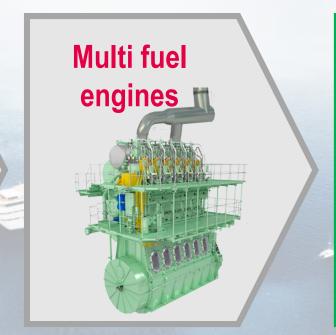
The world is not running out of fossil fuel resources anytime soon. But the environmental impact of CO₂ emissions means we cannot burn it all.

Reference: IEA, World Energy Outlook

670 Gt

CO2

The Target: max. 1.5°C

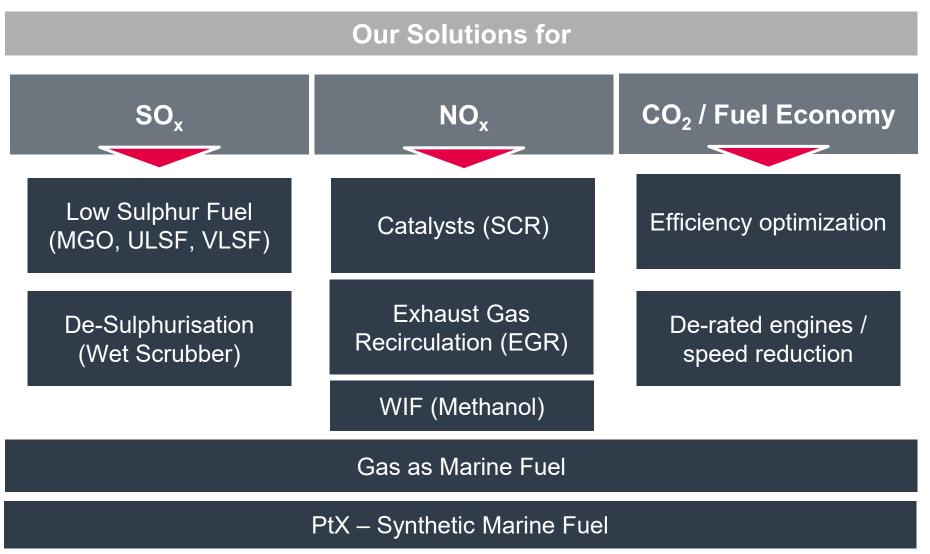

IMO draft -50% GHG by 2050

DECARBONIZATION requires **Technologies & Infrastructure**

Engine Optimization

PARIS2015

Alternative Fuels


Hybridization

MAN Energy Solutions

- 1 Company Strategy, Targets, Market drivers
- 2 Marine Application & Decarbonization Options
- 3 Power to X
- 4 Energy Outlook

Marine Applications

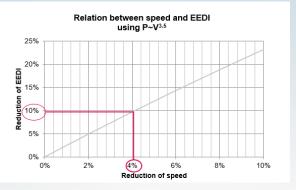
EEDI – Reduction

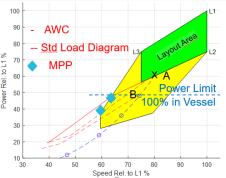
Ship Speed / Power / Low Carbon Fuels

Influence of speed reduction on EEDI reduction is significant

- Due to the propeller law (speed to power relation) and
- as power is divided with speed in EEDI calculation.

Influence of engine power limitation on EEDI reduction is significant


- For TIER III engines with EcoEGR tuning and
- Due to significant fuel savings


Influence of gas fuelled engines on EEDI reduction is significant

- Due to the Carbon factor CF in the EEDI calculation
- Due to significant fuel savings

Fuel	Reduction
MDO	0%
Methanol	5%
LPG	15%
LNG	24%
Ammonia	95%

$\frac{\text{EEDI}}{\text{Capacity x Speed}} = \frac{\sum P \times C_F \times SFC}{\text{Capacity x Speed}}$

Decarbonization with Battery-propulsion & -Backup

Engineering Innovative Solutions

AKA is a Canadian electrical systems integrator with over 20 years of experience in the power and propulsion industry.

MAN B&W 2-stroke Engines

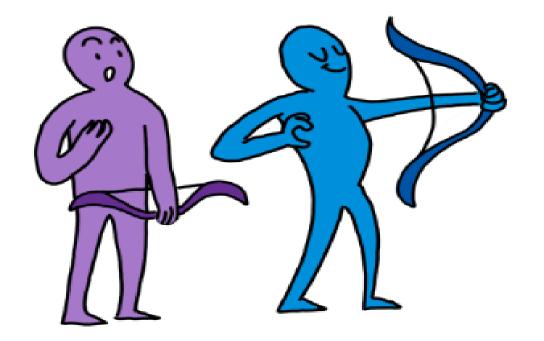
Residual ME/MC

Distillates ME/MC

ULSFO ME/MC

Methane ME-GI/MEGA

Methanol ME-LGIM


LPG ME-LGIP

Ethane ME-GIE

Biofuel (2nd+3rd gen.) ME/MC

MAN Energy Solutions supports all

MAN B&W Multifuel Engines

Today - The Dual Fuel success

4 x World's first duel fuel driven ships equipped with MAN B&W engines

World's first LNG driven ocean going ship

Owner: TOTE

Ship type: Container ship, 3,100 Teu

Capacity: Dual Fuel engine type: 8L70ME-C8.2-GI

Engine delivered in 2012

World's first ethane driven ocean going ship

Owner: Hartmann Schifffahrt
Ship type: LEG Carrier, 36,000 M³
Dual Fuel engine type: 7G50ME-GIE

Engine delivered in 2014

World's first methanol driven ocean going ship

Owner: MOL

Ship type: Methanol carrier, 50,000 dwt. Dual fuel engine type: 7S50ME-B9.3-LGIM

Engine delivered in 2013

World's first LPG driven ocean going ship

Owner: Exmar

Ship type: VLGC, 80,000 M³

Dual Fuel engine type: 6G60ME-LGIP

Not yet in service

Retrofits – there is a huge existing fleet

Worldwide more than 50,000 relevant ships

Engine conversions: HFO to LNG/SNG*

Examples: Converting an 48/60B to 51/60DF

- ~ 99% Reduction in SO, emissions
- ~ 90% Reduction in NO_x emissions
- ~ 20% Potential in CO₂ reduction

*) SNG = Synthetic Natural Gas

Retrofit LNG 4-stroke Owner: Wessels (Wes Amelie) **Engine Conversion:** MAN48/60 -> MAN51/60DF

Retrofit LNG 2-stroke Owner: Nakilat **Engine Conversion:** 7S70ME-C -> 7S70ME-GI

Alternative fuels

Properties

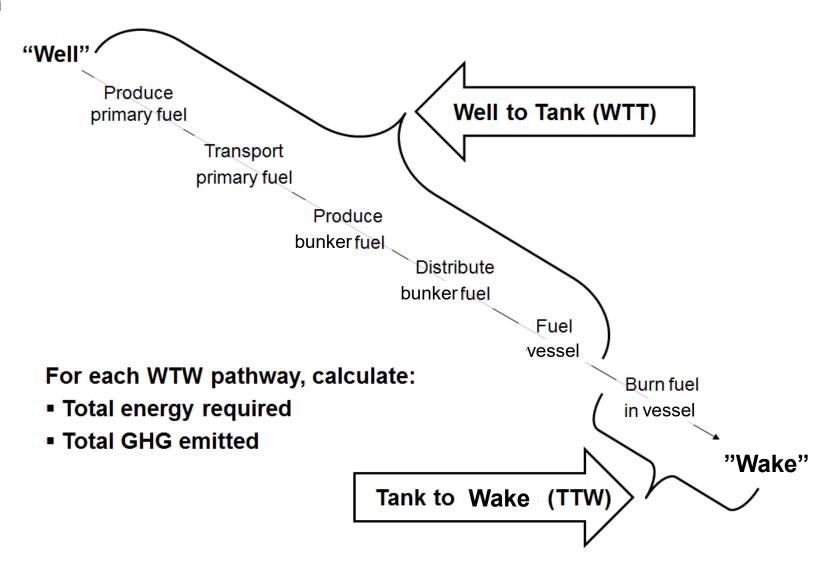
Energy storage type	Specific Energy MJ/kg	Energy Density MJ/L	Required Tank Volume m ^{3. 1}	Supply pressure bar	Estimated PtX efficiency	Injection pressure bar	Emission Reduction Compared To HFO Tier II			
MGO	42,7	35	1000	7-8		950	SO _x	NO _x	CO2	PM
Liquefied natural gas (LNG -162 °C)	50	22	1590	300	0,56	300	90-99%	20-30%	24%	90%
Liquid ethane gas (LEG -88 °C)	47,8	17,1	2046	380		380	90-97%	30-50%	15%	90%
liquefied petroleum gas (LPG -42,4 °C)	46,4	23	1,521	50		600-700	90-1 00%	10-15%	13-18%	90%
Methanol	19.9	15	2333	10	0,54	500	90-97%	30-50%	5%	90%
Ethanol	26	21	1666	10		500				
Ammonia (liquid -33 °C)	18,6	11,5	3043	70	0,65	600-700	100%	Compliant with regulation	>95%	>90%
Hydrogen (liquid -253 °C)	120	8.5	4117		0,68					
Marine battery market leader, Corvus, battery rack	0,29	0,33	106.060							
Tesla model 3 battery Cell 2170*. 2	0,8	2.5	14000							

^{• 1:} Given a 1000 m³ tank for MGO. Additional space for insulation is not calculated for in above diagram. All pressure values given a high pressure Diesel injection principle.

^{• 2:} Values for Tesla battery doesn't contain energy/mass obtained for cooling/safety/classification .

Alternative fuels

Properties


Energy storage type	Specific Energy MJ/kg	Energy Density MJ/L	Required Tank Volume m ^{3. 1}	Supply pressure bar	Estimated PtX efficiency	Injection pressure bar	Emission Reduction Compared To HFO Tier II			
MGO	42,7	35	1000	7-8		950	SO _x	NO _x	CO2	PM
Liquefied natural gas (LNG -162 °C)	50	22	1590	300	0,56	300	90-99%	20-30%	24%	90%
Liquid ethane gas (LEG -88 °C)	47,8	17,1	2046	380		380	90-97%	30-50%	15%	90%
liquefied petroleum gas (LPG -42,4 °C)	46,4	23	1,521	50		600-700	90-1 00%	10-15%	13-18%	90%
Methanol	19.9	15	2333	10	0,54	500	90-97%	30-50%	5%	90%
Ethanol	26	21	1666	10		500				
Ammonia (liquid -33 °C)	18,6	11,5	3043	70	0,65	600-700	100%	Compliant with regulation	>95%	>90%
Hydrogen (liquid -253 °C)	120	8.5	4117		0,68					
Marine battery market leader, Corvus, battery rack	0,29	0,33	106.060							
Tesla model 3 battery Cell 2170*. 2	0,8	2.5	14000							

^{• 1:} Given a 1000 m³ tank for MGO. Additional space for insulation is not calculated for in above diagram. All pressure values given a high pressure Diesel injection principle.

^{• 2:} Values for Tesla battery doesn't contain energy/mass obtained for cooling/safety/classification .

Alternative fuels

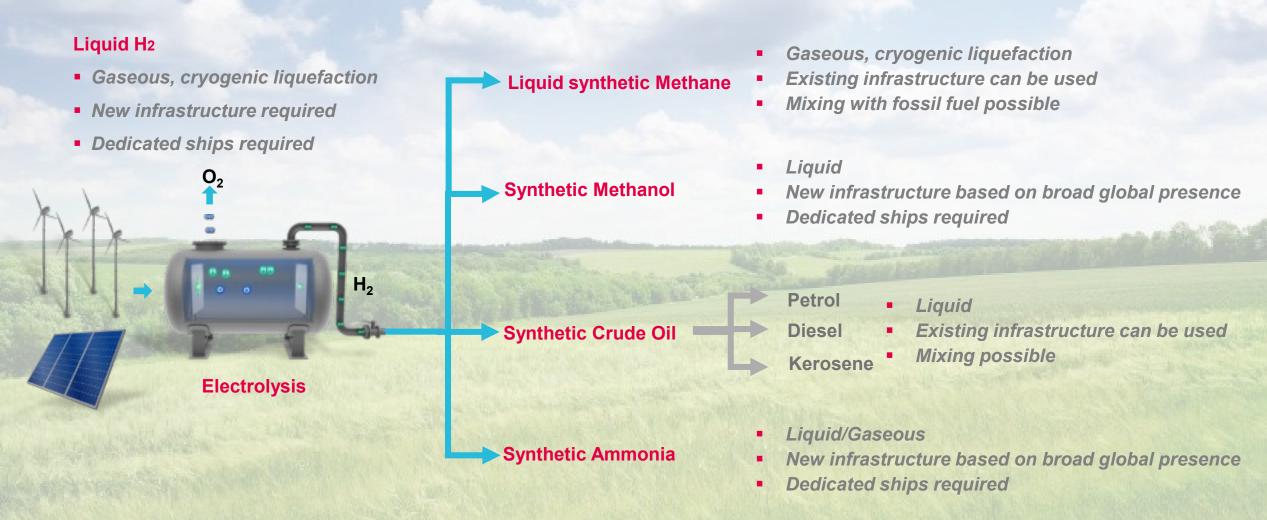
Basis for CO₂ calculation

MAN Energy Solutions

- 1 Market drivers, Emission Regulations, Targets
- 2 Marine Application & Decarbonization Options
- 3 Power to X
- 4 Energy Outlook

MAN power-to-x (PtX)

MAN PtX for carbon-neutral synthetic fuel



- Energy transformation technology that converts electricity into carbon-neutral synthetic fuels
- MAN PtG (power-to-gas): Renewable energy is used to produce hydrogen via water electrolysis.
 Together with CO₂, the hydrogen forms synthetic natural gas (SNG) in a methanation reactor
- MAN PtL (power-to-liquid): Hydrogen is converted into methanol
- MAN PtC (power-to-chemicals): Together with nitrogen or other compounds, hydrogen forms chemicals such as ammonia, ethylene or propylene

PTX paths

Marine evaluation

Ammonia as fuel

NH3 as potential green fuel of the future

- Can be produced 100% from renewable energy sources
- Clean combustion without CO2 or carbon emissions
- Easy to store (liquid -33 deg C or 20 deg C at 9 bar) compared to LNG (-163 deg C) or hydrogen (-253 deg C)
- Industrial experience with ammonia (180 mill ton production per year). Used as refrigerant onboard ships

Green Power to Fuel

e-Fuels: Methane, Methanol, Ammonia & Hydrogen

Technologies are available for future projects

Top technologies for CO₂-minimization available for future projects

Production of CO₂-neutral fuels

Worldwide largest power-to-methane plant in Werlte with MAN reactor

SNG = substitute / synthetic natural gas


Gas- and dual-fuel engines

- ~ 99% less SO_x emissions
- ~ 90% less NO_x emissions (Otto Cycle)
- ~ 100% potential for CO₂ reduction

ME-GI engine operating on LNG

New built ship

Ship built today

Layout for fossil LNG

→ -20% CO₂

(Over)compliant by 2020

Mix in 25% SLNG

→ -40% CO₂

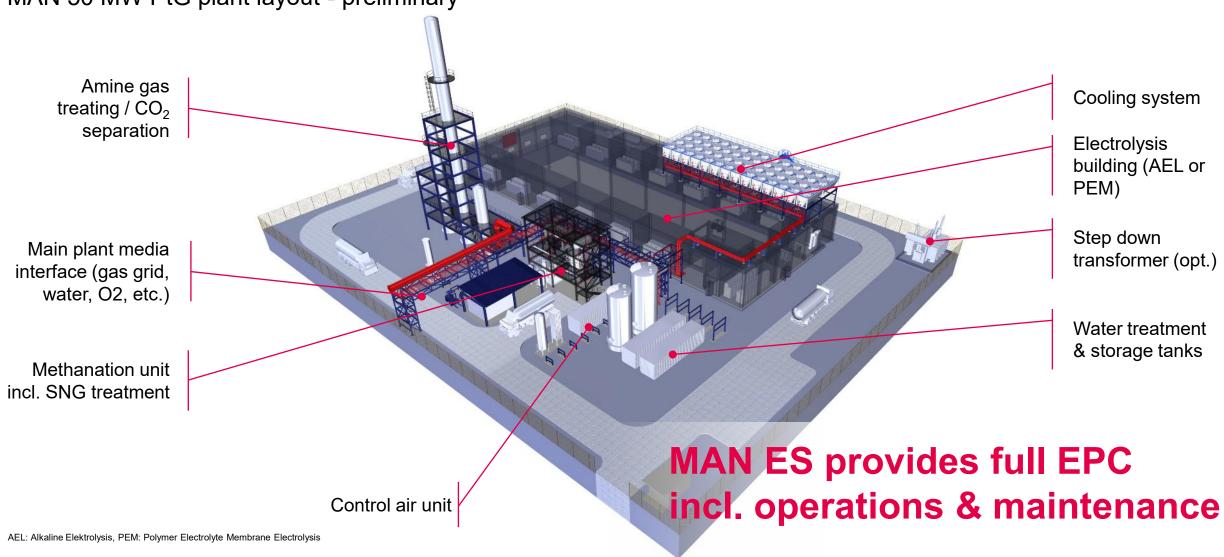
Compliant by 2030

Mix in 38% SLNG

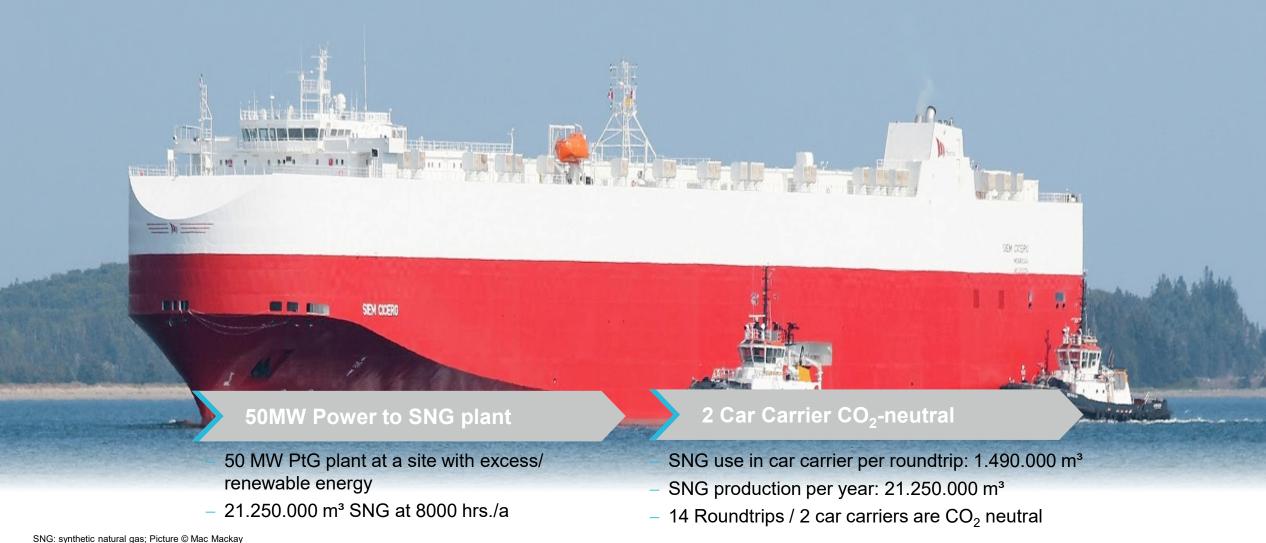
→ -50% CO₂

Compliant by 2050

A LNG powered ship today already provides the flexibility to comply with the foreseeable CO₂ reduction targets!


ME-GI engine operating on LNG

M/V Wes Amelie – World Premiere with liquid SNG


MAN power-to-gas reference plant

MAN 50 MW PtG plant layout - preliminary

Green Marine Fuel

CO₂ neutral shipping with MAN Power to Gas

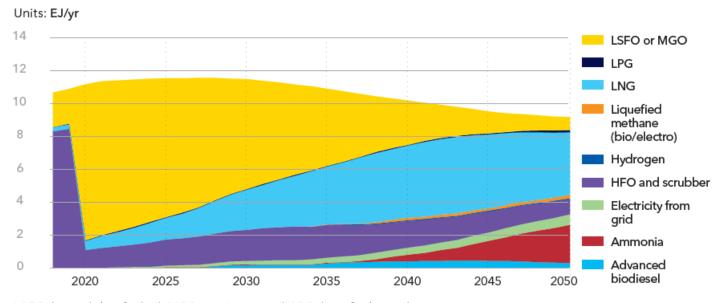
Green Marine Fuel

CO₂ neutral shipping with MAN Power to Gas

MAN Energy Solutions

- 1 Company Strategy, Targets, Market drivers
- 2 Marine Application & Decarbonization Options
- 3 Power to X
- 4 Energy Outlook

DNV forecast on maritime energy transition



Projected fuel mix

DNV GL Main indicators

- LNG and Ammonia will make up a large amount of future fuels
- LSFO and MGO will in the next
 15 years remain the most
 popular fuel by demand

Energy use and projected fuel mix 2018-2050 for the simulated IMO ambitions pathway with main focus on design requirements

LSFO, low-sulphur fuel oil; MGO, marine gas oil; LPG, liquefied petroleum gas; LNG, liquefied natural gas; HFO, heavy fuel oil; Advanced biodiesel, produced by advanced processes from non-food feedstocks

©DNV GL 2019

Disclaimer

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way.

Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

